Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Central Myanmar Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 19399 KB  
Article
Fast Elemental Analysis of Heavy Mineral Suites by Scanning Electron Microscopy (SEM-Unity BEX)
by Jim Buckman, Amy Gough and Max Webb
Minerals 2024, 14(9), 950; https://doi.org/10.3390/min14090950 - 19 Sep 2024
Cited by 3 | Viewed by 2629
Abstract
Developments in scanning electron microscopy (SEM) have introduced instant live coloured SEM images based on elemental composition. Here, we use a technique utilising a Unity BEX detector system, with collection speeds up to 100 times faster than typical standard energy-dispersive X-ray (EDX) analysis [...] Read more.
Developments in scanning electron microscopy (SEM) have introduced instant live coloured SEM images based on elemental composition. Here, we use a technique utilising a Unity BEX detector system, with collection speeds up to 100 times faster than typical standard energy-dispersive X-ray (EDX) analysis systems, to obtain large area backscattered and elemental composition maps of heavy mineral (HM) suites from a sample from an Oligocene fluvio-deltaic system in the Central Myanmar Basin. The fast X-ray collection rate and a high-resolution backscattered (BSE) detector allow for rapid imaging of polished blocks, thin sections, and stubs. Individual HM species can be rapidly classified, allowing for the subsequent collection of compositional and morphological metrics. In addition, the identification of grains such as zircon and apatite allow for further analysis by cathodoluminescence (CL) to identify and record the presence of growth zonation, which is critical for further U-Pb geochronology and thermochronology, using fission track analysis of apatite, zircon, and titanite. The sample used in this study contains a diverse heavy mineral suite due to the complex tectonic history of Myanmar, juxtaposing multiple metamorphic basement terranes alongside volcanic arcs and obducted ophiolites. This, along with the textural and mineralogical immaturity of the sediments themselves (governed by short transport systems and the rapid weathering of the sources), means that a wide variety of heavy mineral species can be identified and tested using this new technique, which provides a time-efficient method in comparison to traditional optical techniques. As the Unity BEX detector is located at the polepiece, it is relatively insensitive to working distance; in addition, the geometry of paired X-ray detectors on either side of the polepiece (at 180°) means that the system is also capable of fully characterising individual particles, on uncut and unpolished grain mounts, without artefacts such as particle shadowing. The development of a more comprehensive heavy mineral EDX database (library) will improve the accuracy of this new technique, as will the correlation with other techniques such as Raman spectroscopy. Full article
Show Figures

Figure 1

14 pages, 27776 KB  
Article
Coupling Relationship between Basin Evolution and Hydrocarbon Reservoirs in the Northern Central Myanmar Basin: Insights from Basin and Petroleum System Modeling
by Zengyuan Zhou, Wenxu Peng, Hefeng Sun, Kailong Feng and Weilin Zhu
J. Mar. Sci. Eng. 2024, 12(9), 1497; https://doi.org/10.3390/jmse12091497 - 29 Aug 2024
Cited by 1 | Viewed by 1691
Abstract
The Myanmar region experienced the subduction of the Indian Ocean plate to the West Burma block and suffered from the land–land collision between the Indian continent and the West Burma block that occurred from the Late Cretaceous to the Cenozoic. Its tectonic evolution [...] Read more.
The Myanmar region experienced the subduction of the Indian Ocean plate to the West Burma block and suffered from the land–land collision between the Indian continent and the West Burma block that occurred from the Late Cretaceous to the Cenozoic. Its tectonic evolution has been complex; thus, oil and gas exploration is difficult, and the overall degree of research has been low. Recent exploration has been hindered by a lack of knowledge on the evolution of the petroleum system. To address this, we conducted hydrocarbon generation and accumulation modeling using both the 2D MOVE and Petro-Mod software 2017 for a complex tectonic section in the Northern Central Myanmar Basin. The results show that the maturity threshold depth of the Cretaceous source rocks in the study area is shallow, and the underground depth of 1200 m to 1400 m has reached the hydrocarbon generation threshold, indicating the start of hydrocarbon generation. Since 48 Ma, the Ro of the source rocks has reached 0.7%, became mature quite early. The Late Cretaceous Paleocene and Eocene formation, located in the southeastern part of the study area, migrated and accumulated hydrocarbons towards the western arc zone in the Eocene and Miocene, respectively. It is worth noting that although the oil and gas potential of each layer in the island arc uplift zone is relatively low, which is conducive to the migration and accumulation of oil and gas generated by the source rocks of the depression towards the island arc zone, shallow areas with developed extensional faults should be avoided. This study is the first to conduct a preliminary assessment and prediction of oil and gas resources, which will provide exploration guidance and reference for the study area and its surrounding areas in the future. Full article
(This article belongs to the Special Issue Exploration and Development of Marine Energy)
Show Figures

Figure 1

17 pages, 9604 KB  
Article
Upper Mantle beneath the Myanmar and Surrounding Tomography: New Insight into Plate Subduction and Volcanism
by Xiangyu Meng, Tonglin Li, Rongzhe Zhang, Huiyan Shi and Ying Han
Remote Sens. 2022, 14(24), 6225; https://doi.org/10.3390/rs14246225 - 8 Dec 2022
Cited by 2 | Viewed by 3814
Abstract
Myanmar and its surrounding areas have complex topography and strong tectonic movement, which has always been a challenge to most geoscientists. We used teleseismic tomography to study the subsurface velocity structure in this area. We present a new P-wave tomographic model beneath Myanmar [...] Read more.
Myanmar and its surrounding areas have complex topography and strong tectonic movement, which has always been a challenge to most geoscientists. We used teleseismic tomography to study the subsurface velocity structure in this area. We present a new P-wave tomographic model beneath Myanmar and the surrounding areas by inverting 129,788 arrival-time data recorded by 372 stations. We found an inclined high-velocity subducting plate beneath central Myanmar, where the dip angle becomes smaller near 25°~26°N, and the seismic depth is limited below 200 km. The Indian oceanic lithosphere is being detached from the Indian continental lithosphere, which limits the depth of the earthquake. The active Tengchong volcano is underlain by a prominent low-velocity (low-V) anomaly in the shallow mantle, which may be caused by the subduction and dehydration of the Burma microplate (or Indian plate). The formation of the Singu volcano is related to the mantle flow of the Qinghai–Tibet plateau and the tearing of the Indian plate. The Yangtze craton (beneath the Sichuan Basin) shows a high-velocity anomaly, and both the shallow and deep parts have been destroyed, which may be related to the upwelling of deep heat flow. Full article
Show Figures

Graphical abstract

18 pages, 1408 KB  
Review
The Impacts of Hydropower Dams in the Mekong River Basin: A Review
by Akarath Soukhaphon, Ian G. Baird and Zeb S. Hogan
Water 2021, 13(3), 265; https://doi.org/10.3390/w13030265 - 22 Jan 2021
Cited by 152 | Viewed by 45610
Abstract
The Mekong River, well known for its aquatic biodiversity, is important to the social, physical, and economic health of millions living in China, Myanmar, Laos, Thailand, Cambodia, and Vietnam. This paper explores the social and environmental impacts of several Mekong basin hydropower dams [...] Read more.
The Mekong River, well known for its aquatic biodiversity, is important to the social, physical, and economic health of millions living in China, Myanmar, Laos, Thailand, Cambodia, and Vietnam. This paper explores the social and environmental impacts of several Mekong basin hydropower dams and groupings of dams and the geographies of their impacts. Specifically, we examined the 3S (Sesan, Sekong Srepok) river system in northeastern Cambodia, the Central Highlands of Vietnam, and southern Laos; the Khone Falls area in southern Laos; the lower Mun River Basin in northeastern Thailand; and the upper Mekong River in Yunnan Province, China, northeastern Myanmar, northern Laos, and northern Thailand. Evidence shows that these dams and groupings of dams are affecting fish migrations, river hydrology, and sediment transfers. Such changes are negatively impacting riparian communities up to 1000 km away. Because many communities depend on the river and its resources for their food and livelihood, changes to the river have impacted, and will continue to negatively impact, food and economic security. While social and environmental impact assessments have been carried out for these projects, greater consideration of the scale and cumulative impacts of dams is necessary. Full article
Show Figures

Figure 1

Back to TopTop