Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline

Search Results (2)

Search Parameters:
Keywords = COMS-AI satellite images

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 58855 KiB  
Article
Statistical Modeling for PM10, PM2.5 and PM1 at Gangneung Affected by Local Meteorological Variables and PM10 and PM2.5 at Beijing for Non- and Dust Periods
by Soo-Min Choi and Hyo Choi
Appl. Sci. 2021, 11(24), 11958; https://doi.org/10.3390/app112411958 - 15 Dec 2021
Cited by 3 | Viewed by 2402
Abstract
Multiple statistical prediction modeling of PM10, PM2.5 and PM1 at Gangneung city, Korea, was performed in association with local meteorological parameters (air temperature, wind speed and relative humidity) and PM10 and PM2.5 concentrations of an upwind site [...] Read more.
Multiple statistical prediction modeling of PM10, PM2.5 and PM1 at Gangneung city, Korea, was performed in association with local meteorological parameters (air temperature, wind speed and relative humidity) and PM10 and PM2.5 concentrations of an upwind site in Beijing, China, in the transport route of Chinese yellow dusts which originated from the Gobi Desert and passed through Beijing to the city from 18 March to 27 March 2015. Before and after the dust periods, the PM10, PM2.5 and PM1 concentrations showed as being very high at 09:00 LST (the morning rush hour) by the increasing emitted pollutants from vehicles and flying dust from the road and their maxima occurred at 20:00 to 22:00 LST (the evening departure time) from the additional pollutants from resident heating boilers. During the dust period, these peak trends were not found due to the persistent accumulation of dust in the city from the Gobi Desert through Beijing, China, as shown in real-time COMS-AI satellite images. Multiple correlation coefficients among PM10, PM2.5 and PM1 at Gangneung were in the range of 0.916 to 0.998. Multiple statistical models were devised to predict each PM concentration, and the significant levels through multi-regression analyses were p < 0.001, showing all the coefficients to be significant. The observed and calculated PM concentrations were compared, and new linear regression models were sequentially suggested to reproduce the original observed PM values with improved correlation coefficients, to some extent. Full article
(This article belongs to the Special Issue Characteristics of Air Pollution Assessment, Modeling and Reduction)
Show Figures

Figure 1

14 pages, 5174 KiB  
Article
Deep Learning-Generated Nighttime Reflectance and Daytime Radiance of the Midwave Infrared Band of a Geostationary Satellite
by Yerin Kim and Sungwook Hong
Remote Sens. 2019, 11(22), 2713; https://doi.org/10.3390/rs11222713 - 19 Nov 2019
Cited by 22 | Viewed by 4352
Abstract
Midwave infrared (MWIR) band of 3.75 μm is important in satellite remote sensing in many applications. This band observes daytime reflectance and nighttime radiance according to the Earth’s and the Sun’s effects. This study presents an algorithm to generate no-present nighttime reflectance and [...] Read more.
Midwave infrared (MWIR) band of 3.75 μm is important in satellite remote sensing in many applications. This band observes daytime reflectance and nighttime radiance according to the Earth’s and the Sun’s effects. This study presents an algorithm to generate no-present nighttime reflectance and daytime radiance at MWIR band of satellite observation by adopting the conditional generative adversarial nets (CGAN) model. We used the daytime reflectance and nighttime radiance data in the MWIR band of the meteoritical imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), as well as in the longwave infrared (LWIR; 10.8 μm) band of the COMS/MI sensor, from 1 January to 31 December 2017. This model was trained in a size of 1024 × 1024 pixels in the digital number (DN) from 0 to 255 converted from reflectance and radiance with a dataset of 256 images, and validated with a dataset of 107 images. Our results show a high statistical accuracy (bias = 3.539, root-mean-square-error (RMSE) = 8.924, and correlation coefficient (CC) = 0.922 for daytime reflectance; bias = 0.006, RMSE = 5.842, and CC = 0.995 for nighttime radiance) between the COMS MWIR observation and artificial intelligence (AI)-generated MWIR outputs. Consequently, our findings from the real MWIR observations could be used for identification of fog/low cloud, fire/hot-spot, volcanic eruption/ash, snow and ice, low-level atmospheric vector winds, urban heat islands, and clouds. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

Back to TopTop