Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = CNCs/ZnO nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4470 KiB  
Article
Cellulose Nanocrystal/Zinc Oxide Bio-Nanocomposite Activity on Planktonic and Biofilm Producing Pan Drug-Resistant Clostridium perfringens Isolated from Chickens and Turkeys
by Ismail Amin, Adel Abdelkhalek, Azza S. El-Demerdash, Ioan Pet, Mirela Ahmadi and Norhan K. Abd El-Aziz
Antibiotics 2025, 14(6), 575; https://doi.org/10.3390/antibiotics14060575 - 3 Jun 2025
Viewed by 801
Abstract
Background/Objectives: Clostridium perfringens is a normal inhabitant of the intestinal tract of poultry, and it has the potential to induce cholangiohepatitis and necrotic enteritis (NE). The poultry industry suffers significant financial losses because of NE, and treatment becomes more challenging due to [...] Read more.
Background/Objectives: Clostridium perfringens is a normal inhabitant of the intestinal tract of poultry, and it has the potential to induce cholangiohepatitis and necrotic enteritis (NE). The poultry industry suffers significant financial losses because of NE, and treatment becomes more challenging due to resistant C. perfringens strains. Methods: The antimicrobial and antibiofilm activities of cellulose nanocrystals/zinc oxide nanocomposite (CNCs/ZnO) were assesses against pan drug-resistant (PDR) C. perfringens isolated from chickens and turkeys using phenotypic and molecular assays. Results: The overall prevalence rate of C. perfringens was 44.8% (43.75% in chickens and 58.33% in turkeys). Interestingly, the antimicrobial susceptibility testing of C. perfringens isolates revealed the alarming PDR (29.9%), extensively drug-resistant (XDR, 54.5%), and multidrug-resistant (MDR, 15.6%) isolates, with multiple antimicrobial resistance (MAR) indices ranging from 0.84 to 1. All PDR C. perfringens isolates could synthesize biofilms; among them, 21.7% were strong biofilm producers. The antimicrobial potentials of CNCs/ZnO against PDR C. perfringens isolates were evaluated by the agar well diffusion and broth microdilution techniques, and the results showed strong antimicrobial activity of the green nanocomposite with inhibition zones’ diameters of 20–40 mm and MIC value of 0.125 µg/mL. Moreover, the nanocomposite exhibited a great antibiofilm effect against the pre-existent biofilms of PDR C. perfringens isolates in a dose-dependent manner [MBIC50 up to 83.43 ± 1.98 for the CNCs/ZnO MBC concentration (0.25 μg/mL)]. The transcript levels of agrB quorum sensing gene and pilA2 type IV pili gene responsible for biofilm formation were determined by the quantitative real time-PCR technique, pre- and post-treatment with the CNCs/ZnO nanocomposite. The expression of both genes downregulated (0.099 ± 0.012–0.454 ± 0.031 and 0.104 ± 0.006–0.403 ± 0.035, respectively) when compared to the non-treated isolates. Conclusions: To the best of our knowledge, this is the first report of CNCs/ZnO nanocomposite’s antimicrobial and antibiofilm activities against PDR C. perfringens isolated from chickens and turkeys. Full article
(This article belongs to the Special Issue Antimicrobial and Antibiofilm Activity by Natural Compounds)
Show Figures

Figure 1

11 pages, 2915 KiB  
Article
Tunable Construction of Chiral Nematic Cellulose Nanocrystals/ZnO Films for Ultra-Sensitive, Recyclable Sensing of Humidity and Ethanol
by Xiao Xiao, Hanqi Dong, Xinxin Ping, Guowei Shan, Jie Chen, Mengxing Yan, Weixing Li and Zhe Ling
Int. J. Mol. Sci. 2024, 25(9), 4978; https://doi.org/10.3390/ijms25094978 - 2 May 2024
Cited by 2 | Viewed by 1991
Abstract
The investigation of functional materials derived from sustainable and eco-friendly bioresources has generated significant attention. Herein, nanocomposite films based on chiral nematic cellulose crystals (CNCs) were developed by incorporating xylose and biocompatible ZnO nanoparticles (NPs) via evaporation-induced self-assembly (EISA). The nanocomposite films exhibited [...] Read more.
The investigation of functional materials derived from sustainable and eco-friendly bioresources has generated significant attention. Herein, nanocomposite films based on chiral nematic cellulose crystals (CNCs) were developed by incorporating xylose and biocompatible ZnO nanoparticles (NPs) via evaporation-induced self-assembly (EISA). The nanocomposite films exhibited iridescent color changes that corresponded to the birefringence phenomenon under polarized light, which was attributed to the formation of cholesteric structures. ZnO nanoparticles were proved to successfully adjust the helical pitches of the chiral arrangements of the CNCs, resulting in tunable optical light with shifted wavelength bands. Furthermore, the nanocomposite films showed fast humidity and ethanol stimuli response properties, exhibiting the potential of stimuli sensors of the CNC-based sustainable materials. Full article
(This article belongs to the Special Issue Nanocellulose: Recent Advances and Green Applications)
Show Figures

Figure 1

12 pages, 3304 KiB  
Article
Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer
by Dilpreet S. Bajwa, Jamileh Shojaeiarani, Joshua D. Liaw and Sreekala G. Bajwa
J. Compos. Sci. 2021, 5(2), 43; https://doi.org/10.3390/jcs5020043 - 1 Feb 2021
Cited by 36 | Viewed by 4174
Abstract
Biopolymers with universal accessibility and inherent biodegradability can offer an appealing sustainable platform to supersede petroleum-based polymers. In this research, a hybrid system derived from cellulose nanocrystals (CNCs) and zinc oxide (ZnO) nanoparticles was added into poly (lactic acid) (PLA) to improve its [...] Read more.
Biopolymers with universal accessibility and inherent biodegradability can offer an appealing sustainable platform to supersede petroleum-based polymers. In this research, a hybrid system derived from cellulose nanocrystals (CNCs) and zinc oxide (ZnO) nanoparticles was added into poly (lactic acid) (PLA) to improve its mechanical, thermal, and flame resistance properties. The ZnO-overlaid CNCs were prepared via the solvent casting method and added to PLA through the melt-blending extrusion process. The composite properties were evaluated using SEM, a dynamic mechanical analyzer (DMA), FTIR TGA, and horizontal burning tests. The results demonstrated that the incorporation of 1.5% nano-CNC-overlaid ZnO nanoparticles into PLA enhanced the mechanical and thermal characteristics and the flame resistance of the PLA matrix. Oxidative combustion of CNC-ZnO promoted char formation and flame reduction. The shielding effect from the ZnO-CNC blend served as an insulator and resulted in noncontinuous burning, which increased the fire retardancy of nanocomposites. By contrast, the addition of ZnO into PLA accelerated the polymer degradation at higher temperature and shifted the maximum degradation to lower temperature in comparison with pure PLA. For PLA composites reinforced by ZnO, the storage modulus decreased with ZnO content possibly due to the scissoring effect of ZnO in the PLA matrix, which resulted in lower molecular weight. Full article
Show Figures

Figure 1

15 pages, 1207 KiB  
Article
RETRACTED: Cellulose Nanocrystals/ZnO as a Bifunctional Reinforcing Nanocomposite for Poly(vinyl alcohol)/Chitosan Blend Films: Fabrication, Characterization and Properties
by Susan Azizi, Mansor B. Ahmad, Nor Azowa Ibrahim, Mohd Zobir Hussein and Farideh Namvar
Int. J. Mol. Sci. 2014, 15(6), 11040-11053; https://doi.org/10.3390/ijms150611040 - 18 Jun 2014
Cited by 102 | Viewed by 12683 | Retraction
Abstract
In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial [...] Read more.
In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses. Full article
(This article belongs to the Special Issue Biodegradable Materials)
Show Figures

Figure 1

Back to TopTop