Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = CHDN3(r)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 749 KB  
Article
Computing Degree Based Topological Properties of Third Type of Hex-Derived Networks
by Chang-Cheng Wei, Haidar Ali, Muhammad Ahsan Binyamin, Muhammad Nawaz Naeem and Jia-Bao Liu
Mathematics 2019, 7(4), 368; https://doi.org/10.3390/math7040368 - 23 Apr 2019
Cited by 27 | Viewed by 4007
Abstract
In chemical graph theory, a topological index is a numerical representation of a chemical network, while a topological descriptor correlates certain physicochemical characteristics of underlying chemical compounds besides its chemical representation. The graph plays a vital role in modeling and designing any chemical [...] Read more.
In chemical graph theory, a topological index is a numerical representation of a chemical network, while a topological descriptor correlates certain physicochemical characteristics of underlying chemical compounds besides its chemical representation. The graph plays a vital role in modeling and designing any chemical network. Simonraj et al. derived a new type of graphs, which is named a third type of hex-derived networks. In our work, we discuss the third type of hex-derived networks H D N 3 ( r ) , T H D N 3 ( r ) , R H D N 3 ( r ) , C H D N 3 ( r ) , and compute exact results for topological indices which are based on degrees of end vertices. Full article
(This article belongs to the Special Issue Computational Methods in Analysis and Applications)
Show Figures

Figure 1

Back to TopTop