Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Buxus wallichiana

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2888 KiB  
Article
A Novel Shift in the Absorbance Maxima of Methyl Orange with Calcination Temperature of Green Tin Dioxide Nanoparticle-Induced Photocatalytic Activity
by Sirajul Haq, Rimsha Ehsan, Farid Menaa, Nadia Shahzad, Salah Ud Din, Muhammad Imran Shahzad, Wajid Rehman, Muhammad Waseem, Walaa Alrhabi, Hanadi A. Almukhlifi and Sohad Abdulkaleg Alsharef
Catalysts 2022, 12(11), 1397; https://doi.org/10.3390/catal12111397 - 9 Nov 2022
Cited by 14 | Viewed by 2882
Abstract
Background: The photocatalytic degradation of toxic organic compounds has received great attention for the past several years. Dyes, such as methyl orange (MO), are one of the major pollutants which create environmental hazards in the hydrosphere, living organisms and human beings. During photocatalytic [...] Read more.
Background: The photocatalytic degradation of toxic organic compounds has received great attention for the past several years. Dyes, such as methyl orange (MO), are one of the major pollutants which create environmental hazards in the hydrosphere, living organisms and human beings. During photocatalytic degradation, NPs are activated in the presence of UV–Vis radiation which in turn creates a redox environment in the system and behaves as a sensitizer for light-induced redox mechanisms. Tin oxide (SnO2) is one of the prominent, but less investigated, nanomaterials compared to titanium oxide (TiO2) and Zinc oxide (ZnO) nanoparticles (NPs). Methods: Herein, Buxus wallichiana (B. wallichiana) leaf extract was utilized as a reducing and capping agent for the biosynthesis of SnO2 NPs. The effects of the calcination temperature on their photocatalytic, structure and surface properties were then examined. The degree of crystallinity and the crystallite size were determined through X-ray diffraction (XRD) analysis. The pore size and surface area were calculated by Burnett–Emmitt–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods based on nitrogen desorption data. Morphological changes were assessed by scanning electron microscopy (SEM). The optical behavior was analyzed through UV–Vis diffuse reflectance spectroscopy (DRS) data and the band gap subsequently calculated. The photocatalytic efficiency of SnO2 NPs was evaluated by double beam UV–Vis spectrophotometry under the influence of initial MO concentration, catalyst dose and pH of MO solution. The surface functional moieties were identified using Fourier transform infrared (FTIR) spectroscopy. All the calcined SnO2 NPs were used as photocatalysts for the mineralization of MO in aqueous media. Results: The degree of crystallinity and the crystallite size increased with the calcination temperature. The transmittance edge obtained for all the calcined SnO2 NPs shows a maximum absorbance in the visible range (λ-max = 464 nm). Moving toward higher wavelengths, a sudden intense red shift (from 464 nm to 500 nm), attributed to the incorporation of a hydroxyl radical at the ortho-position in the benzene ring associated with the dimethylamine group of MO, was observed in the absorbance of the samples calcined up to 300 °C. The percentage degradation of MO was found to decrease with increasing calcination temperatures. The optimal photocatalytic activity toward MO (15 ppm) in a solution of pH = 6 was obtained with 15 mg SnO2 NPs calcined at 100 °C. Conclusions: UV–Vis absorption spectroscopy demonstrates that the absorption spectra of MO are strongly modified by the calcination temperature. This work opens new avenues for the use of SnO2 NPs as photocatalysts against the degradation of industrial effluents enriched with different dyes. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

13 pages, 2772 KiB  
Article
Investigation of the Biological Applications of Biosynthesized Nickel Oxide Nanoparticles Mediated by Buxus wallichiana Extract
by Salah Ud Din, Hina Iqbal, Sirajul Haq, Pervaiz Ahmad, Mayeen Uddin Khandaker, Hosam O. Elansary, Fatemah F. Al-Harbi, Shaimaa A. M. Abdelmohsen and Tarek K. Zin El-Abedin
Crystals 2022, 12(2), 146; https://doi.org/10.3390/cryst12020146 - 20 Jan 2022
Cited by 26 | Viewed by 3299
Abstract
The preparation of nickel oxide nanoparticles (NiO NPs) was carried out using an environmentally friendly and novel green synthetic strategy that included the use of Buxus wallichiana leaf extract as a reducing agent. Energy-dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy [...] Read more.
The preparation of nickel oxide nanoparticles (NiO NPs) was carried out using an environmentally friendly and novel green synthetic strategy that included the use of Buxus wallichiana leaf extract as a reducing agent. Energy-dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) techniques were used to characterize the resulting NiO NPs. At various concentrations, NiO NPs were tested for their percentage scavenging activity against the ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) free radical, with an IC50 value of 234.84 g/L. Furthermore, the bactericidal activity of NiO NPs was studied by the agar well diffusion method against two Gram-positive bacterial strains (B. licheniformis and B. subtilis) and two Gram-negative bacterial strains (E. coli and K. pneumoniae). Full article
Show Figures

Figure 1

Back to TopTop