Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Bradysia impatiens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1683 KiB  
Article
Effect of Prey Species and Prey Densities on the Performance of Adult Coenosia attenuata
by Deyu Zou, Thomas A. Coudron, Lisheng Zhang, Weihong Xu, Jingyang Xu, Mengqing Wang, Xuezhuang Xiao and Huihui Wu
Insects 2021, 12(8), 669; https://doi.org/10.3390/insects12080669 - 23 Jul 2021
Cited by 3 | Viewed by 2509
Abstract
Mass production of Coenosia attenuata Stein at low cost is very important for their use as a biological control agent. The present study reports the performance of C. attenuata adults when reared on Drosophila melanogaster Meigen or Bradysia impatiens (Johannsem). Different densities (6, [...] Read more.
Mass production of Coenosia attenuata Stein at low cost is very important for their use as a biological control agent. The present study reports the performance of C. attenuata adults when reared on Drosophila melanogaster Meigen or Bradysia impatiens (Johannsem). Different densities (6, 9, 15, 24 and 36 adults per predator) of D. melanogaster or (6, 12, 24, 36 and 48 adults per predator) of B. impatiens were used at 26 ± 1 °C, 14:10 (L:D) and 70 ± 5% RH. The results concluded that C. attenuata adults had higher fecundity, longer longevity and less wing damage when reared on B. impatiens adults compared to D. melanogaster adults. Additionally, C. attenuata adults demonstrated greater difficulty catching and carrying heavier D. melanogaster adults than lighter B. impatiens adults. In this case, 12 to 24 adults of B. impatiens daily per predator were considered optimal prey density in the mass rearing of adult C. attenuata. Full article
Show Figures

Figure 1

15 pages, 3423 KiB  
Article
Analysis of the Role of Bradysia impatiens (Diptera: Sciaridae) as a Vector Transmitting Peanut Stunt Virus on the Model Plant Nicotiana benthamiana
by Marta Budziszewska, Patryk Frąckowiak and Aleksandra Obrępalska-Stęplowska
Cells 2021, 10(6), 1546; https://doi.org/10.3390/cells10061546 - 18 Jun 2021
Cited by 5 | Viewed by 4747
Abstract
Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on [...] Read more.
Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission. Full article
(This article belongs to the Collection Plant-Virus/Viroid-Vector Interactions)
Show Figures

Figure 1

Back to TopTop