Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Brachychiton populneus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2152 KiB  
Article
Catalytic Hydrothermal Liquefaction of Brachychiton populneus Biomass for the Production of High-Value Bio-Crude
by Ikram Eladnani, Maria Paola Bracciale, Martina Damizia, Seyedmohammad Mousavi, Paolo De Filippis, Rajae Lakhmiri and Benedetta de Caprariis
Processes 2023, 11(2), 324; https://doi.org/10.3390/pr11020324 - 19 Jan 2023
Cited by 8 | Viewed by 2520
Abstract
The current study focused on the heterogenous catalytic hydrothermal liquefaction (HTL) of Brachychiton populneus biomass seed, using Ni as hydrogenation catalyst and Fe as active hydrogen producer. The activity of Ni metal and of Ni/Al2O3 in the HTL of seed [...] Read more.
The current study focused on the heterogenous catalytic hydrothermal liquefaction (HTL) of Brachychiton populneus biomass seed, using Ni as hydrogenation catalyst and Fe as active hydrogen producer. The activity of Ni metal and of Ni/Al2O3 in the HTL of seed (BS) and of a mixture of seed and shell (BM) was studied. To establish the best operating process conditions, the influence of variation of temperature and reaction time on the product yields was also examined. The highest bio-crude yields of 57.18% and 48.23% for BS and BM, respectively, were obtained at 330 °C and 10 min of reaction time, in the presence of Ni/Al2O3 as catalyst and Fe as hydrogen donor. Elemental analysis results showed that at these operative conditions, an increase of the higher heating value (HHV) from 25.14 MJ/kg to 38.04 MJ/kg and from 17.71 MJ/kg to 31.72 MJ/kg was obtained for BS and BM biomass, respectively, when the combination of Fe and Ni/Al2O3 was used. Gas chromatography–mass spectrometry (GC-MS) and Fourier transform infrared spectroscopy (FT-IR), used to determine the oils’ chemical compositions, showed that the combined presence of Fe and Ni/Al2O3 favored the hydrodeoxygenation of the fatty acids into hydrocarbons, indeed their amount increased to ≈20% for both biomasses used. These results demonstrate that the obtained bio-crude has the capacity to be a source of synthetic fuels and chemical feedstock. Full article
(This article belongs to the Special Issue Technologies for Climate-Neutral Energy Systems)
Show Figures

Figure 1

17 pages, 4989 KiB  
Article
Efficacy of Sterculia diversifolia Leaf Extracts: Volatile Compounds, Antioxidant and Anti-Inflammatory Activity, and Green Synthesis of Potential Antibacterial Silver Nanoparticles
by Ezz Al-Dein M. Al-Ramamneh, Ayoup M. Ghrair, Ashok K. Shakya, Khalid Y. Alsharafa, Khalid Al-Ismail, Samer Y. Al-Qaraleh, Jacek Mojski and Rajashri R. Naik
Plants 2022, 11(19), 2492; https://doi.org/10.3390/plants11192492 - 23 Sep 2022
Cited by 15 | Viewed by 3824
Abstract
Sterculia diversifolia, widely distributed in Jordan as an ornamental plant, is a synonoum for Brachychiton populneus. Phytochemical studies examining the volatile chemicals in Sterculia diversifolia leaves are limited, despite the rising demand for their numerous applications. Furthermore, it was only recently [...] Read more.
Sterculia diversifolia, widely distributed in Jordan as an ornamental plant, is a synonoum for Brachychiton populneus. Phytochemical studies examining the volatile chemicals in Sterculia diversifolia leaves are limited, despite the rising demand for their numerous applications. Furthermore, it was only recently that a report described the friendly synthesis of silver nanoparticles (AgNPs) using aqueous extract derived from Brachychiton populneus leaves. Therefore, AgNPs were produced using either aqueous plant extracts (AgWPE) or ethanolic plant extracts (AgEPE), and Shimadzu GC-MS equipment was used to detect volatile compounds in the ethanolic leaf extracts. GC-MS profile of leaf ethanolic extracts of the Jordanian chemotypes of S. diversifolia revealed the existence of major components: (3β)-Lup-20(29)-en-3-ol acetate (30.97%) and 1-octadecyne (24.88). Other compounds are squalene (7.19%), germanicol (6.23), dl-α-tocopherol (5.24), heptacosane (4.41), phytol (3.54) and pentacosane (2.89). According to published studies, these reported chemicals have numerous uses, including as animal feed, vitamin precursors, possible eco-friendly herbicides, antioxidants, and anti-inflammatory agents. Aqueous extracts of S. diversifolia leaves had total phenolic of 5.33 mg GAE/g extract and flavonoid contents of 64.88 mg QE/g extract, respectively. The results indicated the contribution of phenolic and flavonoids to this plant’s anti-inflammatory and antioxidant properties. The reduction in AgNO3 to AgNPs using S. diversifolia leaf extracts was confirmed by the change in solution color from colorless to dark black. Further characterization was attempted by X-ray diffraction, Malvern zeta-sizer and scanning electron microscope. The efficacy of synthesized Ag nanoparticles using aqueous or ethanolic plant extract of S. diversifolia against the Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus showed appreciable activity at 25 µg/mL concentration compared to the source plant extracts. Full article
Show Figures

Figure 1

18 pages, 7230 KiB  
Article
Characterization and Evaluation of the Antioxidant, Antidiabetic, Anti-Inflammatory, and Cytotoxic Activities of Silver Nanoparticles Synthesized Using Brachychiton populneus Leaf Extract
by Muhammad Naveed, Hira Batool, Shafiq ur Rehman, Aneela Javed, Syeda Izma Makhdoom, Tariq Aziz, Amal A. Mohamed, Manal Y. Sameeh, Mashael W. Alruways, Anas S. Dablool, Abdulraheem Ali Almalki, Abdulhakeem S. Alamri and Majid Alhomrani
Processes 2022, 10(8), 1521; https://doi.org/10.3390/pr10081521 - 2 Aug 2022
Cited by 94 | Viewed by 6562
Abstract
Bionanotechnology is the combination of biotechnology and nanotechnology for the development of biosynthetic and environmentally friendly nanomaterial synthesis technology. The presented research work adopted a reliable and environmentally sustainable approach to manufacturing silver nanoparticles from Brachychiton populneus (BP-AgNPs) leaf extract in aqueous medium. [...] Read more.
Bionanotechnology is the combination of biotechnology and nanotechnology for the development of biosynthetic and environmentally friendly nanomaterial synthesis technology. The presented research work adopted a reliable and environmentally sustainable approach to manufacturing silver nanoparticles from Brachychiton populneus (BP-AgNPs) leaf extract in aqueous medium. The Brachychiton populneus-derived silver nanoparticles were characterized by UV–Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). In addition, the antioxidant, anti-inflammatory, antidiabetic, and cytotoxic activities of AgNPs were brought to light. The synthesis of BP-AgNPs was verified at 453 nm wavelength by UV–Vis spectrum. FTIR analysis revealed that synthesis, stability, and capping of AgNPs depend on functional groups such as alkane, alkene, nitro, flouro, phenol, alcoholic, and flavones, present in plant extract. The SEM analysis revealed evenly distributed cubical-shaped nanoparticles. The average diameter of AgNPs was 12 nm calculated from SEM image through ImageJ software. EDX spectrum confirmed the presence of Ag at 3 keV and other trace elements such as oxygen and chlorine. The biosynthesized silver nanoparticles exhibited proven antioxidant (DPPH assay), antidiabetic (alpha amylase assay), anti-inflammatory (albumin denaturation assay), and cytotoxic (MTT assay) potential against U87 and HEK293 cell lines in comparison to standard drugs. In these assays, BP-AgNPs exhibited inhibition in a concentration-dependent manner and had lower IC50 values compared to standards. All these outcomes suggest that silver nanoparticles work as a beneficial biological agent. The salient features of biosynthesized silver nanoparticles propose their effective applications in the biomedical domain in the future. Full article
Show Figures

Figure 1

Back to TopTop