Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Bayesian MSAR-TVP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4760 KB  
Article
A Bayesian Markov Switching Autoregressive Model with Time-Varying Parameters for Dynamic Economic Forecasting
by Syarifah Inayati, Nur Iriawan, Irhamah and Uha Isnaini
Forecasting 2025, 7(4), 79; https://doi.org/10.3390/forecast7040079 - 17 Dec 2025
Abstract
This research tackles the challenge of forecasting nonlinear time series data with stochastic structural variations by proposing the Markov switching autoregressive model with time-varying parameters (MSAR-TVP). Although effective in modeling dynamic regime transitions, the Classical MSAR-TVP faces challenges with complex datasets. To address [...] Read more.
This research tackles the challenge of forecasting nonlinear time series data with stochastic structural variations by proposing the Markov switching autoregressive model with time-varying parameters (MSAR-TVP). Although effective in modeling dynamic regime transitions, the Classical MSAR-TVP faces challenges with complex datasets. To address these issues, a Bayesian MSAR-TVP framework was developed, incorporating flexible parameters that adapt dynamically across regimes. The model was tested on two periods of U.S. real GNP data: a historically stable segment (1952–1986) and a more complex, modern segment that includes more economic volatility (1947–2024). The Bayesian MSAR-TVP demonstrated superior performance in handling complex datasets, particularly in out-of-sample forecasting, outperforming the Bayesian AR-TVP, Classical MSAR-TVP, and Classical MSAR models, as evaluated by mean absolute percentage error (MAPE) and mean absolute error (MAE). For in-sample data, the Classical MSAR-TVP retained its stability advantage. These findings highlight the Bayesian MSAR-TVP’s ability to address parameter uncertainty and adapt to data fluctuations, making it highly effective for forecasting dynamic economic cycles. Additionally, the two-year forecast underscores its practical utility in predicting economic cycles, suggesting continued expansion. This reinforces the model’s significance for economic forecasting and strategic policy formulation. Full article
Show Figures

Figure 1

Back to TopTop