Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Bactrocera tsuneonis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5692 KiB  
Article
Forecasting the Expansion of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) in China Using the MaxEnt Model
by Jianxiang Mao, Fanhua Meng, Yunzhe Song, Dongliang Li, Qinge Ji, Yongcong Hong, Jia Lin and Pumo Cai
Insects 2024, 15(6), 417; https://doi.org/10.3390/insects15060417 - 4 Jun 2024
Cited by 5 | Viewed by 1607
Abstract
The invasive pest, Bactrocera tsuneonis (Miyake), has become a significant threat to China’s citrus industry. Predicting the area of potentially suitable habitats for B. tsuneonis is essential for optimizing pest control strategies that mitigate its impact on the citrus industry. Here, existing distribution [...] Read more.
The invasive pest, Bactrocera tsuneonis (Miyake), has become a significant threat to China’s citrus industry. Predicting the area of potentially suitable habitats for B. tsuneonis is essential for optimizing pest control strategies that mitigate its impact on the citrus industry. Here, existing distribution data for B. tsuneonis, as well as current climate data and projections for four future periods (2021–2040, 2041–2060, 2061–2080, and 2081–2100) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) were obtained. The distribution of B. tsuneonis under current and different climate change scenarios in China was predicted using the optimized MaxEnt model, ArcGIS, and the ENMeval data package. Model accuracy was assessed using ROC curves, and the primary environmental factors influencing the distribution of the pest were identified based on the percent contribution. When the regularization multiplier (RM) was set to 1.5 and the feature combination (FC) was set to LQH, a model with lower complexity was obtained. Under these parameter settings, the mean training AUC was 0.9916, and the mean testing AUC was 0.9854, indicating high predictive performance. The most influential environmental variables limiting the distribution of B. tsuneonis were the Precipitation of Warmest Quarter (Bio18) and Temperature Seasonality (standard deviation ×100) (Bio4). Under current climatic conditions, potentially suitable habitat for B. tsuneonis in China covered an area of 215.9 × 104 km2, accounting for 22.49% of the country’s land area. Potentially suitable habitat was primarily concentrated in Central China, South China, and East China. However, under future climatic projections, the area of suitable habitat for B. tsuneonis exhibited varying degrees of expansion. Furthermore, the centroid of the total suitable habitat for this pest gradually shifted westward and northward. These findings suggest that B. tsuneonis will spread to northern and western regions of China under future climate changes. The results of our study indicate that climate change will have a major effect on the invasion of B. tsuneonis and have implications for the development of strategies to control the spread of B. tsuneonis in China. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 2933 KiB  
Article
New Species-Specific Primers for Molecular Diagnosis of Bactrocera minax and Bactrocera tsuneonis (Diptera: Tephritidae) in China Based on DNA Barcodes
by Linyu Zheng, Yue Zhang, Wenzhao Yang, Yiying Zeng, Fan Jiang, Yujia Qin, Jiafeng Zhang, Zhaochun Jiang, Wenzhao Hu, Dijin Guo, Jia Wan, Zihua Zhao, Lijun Liu and Zhihong Li
Insects 2019, 10(12), 447; https://doi.org/10.3390/insects10120447 - 12 Dec 2019
Cited by 10 | Viewed by 3630
Abstract
Tephritidae fruit flies (Diptera: Tephritidae) are regarded as important damage-causing species due to their ability to cause great economic losses in fruit and vegetable crops. Bactrocera minax and Bactrocera tsuneonis are two sibling species of the subgenus Tetradacus of Bactrocera that are distributed [...] Read more.
Tephritidae fruit flies (Diptera: Tephritidae) are regarded as important damage-causing species due to their ability to cause great economic losses in fruit and vegetable crops. Bactrocera minax and Bactrocera tsuneonis are two sibling species of the subgenus Tetradacus of Bactrocera that are distributed across a limited area of China, but have caused serious impacts. They share similar morphological characteristics. These characteristics can only be observed in the female adult individuals. The differences between them cannot be observed in preimaginal stages. Thus, it is difficult to distinguish them in preimaginal stages morphologically. In this study, we used molecular diagnostic methods based on cytochrome c oxidase subunit I and species-specific markers to identify these two species and improve upon the false-positive results of previous species-detection primers. DNA barcode sequences were obtained from 900 individuals of B. minax and 63 individuals of B. tsuneonis. Based on these 658 bp DNA barcode sequences of the cytochrome c oxidase subunit I gene, we successfully designed the species-specific primers for B. minax and B. tsuneonis. The size of the B. minax specific fragment was 422 bp and the size of the B. tsuneonis specific fragment was 456 bp. A series of PCR trials ensured the specificity of these two pairs of primers. Sensitivity assay results demonstrated that the detection limit for the DNA template concentration was 0.1~1 ng/μL for these two species. In this study, we established a more reliable, rapid, and low-cost molecular identification method for all life stages of B. minax and B. tsuneonis. Species-specific PCR can be applied in plant quarantine, monitoring and control of B. minax and B. tsuneonis. Full article
Show Figures

Figure 1

Back to TopTop