Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = BREMOLA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 25413 KB  
Article
No-Reference Image Quality Assessment with Moving Spectrum and Laplacian Filter for Autonomous Driving Environment
by Woongchan Nam, Taehyun Youn and Chunghun Ha
Vehicles 2025, 7(1), 8; https://doi.org/10.3390/vehicles7010008 - 21 Jan 2025
Cited by 4 | Viewed by 1971
Abstract
The increasing integration of autonomous driving systems into modern vehicles heightens the significance of Image Quality Assessment (IQA), as it pertains directly to vehicular safety. In this context, the development of metrics that can emulate the Human Visual System (HVS) in assessing image [...] Read more.
The increasing integration of autonomous driving systems into modern vehicles heightens the significance of Image Quality Assessment (IQA), as it pertains directly to vehicular safety. In this context, the development of metrics that can emulate the Human Visual System (HVS) in assessing image quality assumes critical importance. Given that blur is often the primary aberration in images captured by aging or deteriorating camera sensors, this study introduces a No-Reference (NR) IQA model termed BREMOLA (Blind/Referenceless Model via Moving Spectrum and Laplacian Filter). This model is designed to sensitively respond to varying degrees of blur in images. BREMOLA employs the Fourier transform to quantify the decline in image sharpness associated with increased blur. Subsequently, deviations in the Fourier spectrum arising from factors such as nighttime lighting or the presence of various objects are normalized using the Laplacian filter. Experimental application of the BREMOLA model demonstrates its capability to differentiate between images processed with a 3 × 3 average filter and their unprocessed counterparts. Additionally, the model effectively mitigates the variance introduced in the Fourier spectrum due to variables like nighttime conditions, object count, and environmental factors. Thus, BREMOLA presents a robust approach to IQA in the specific context of autonomous driving systems. Full article
Show Figures

Figure 1

Back to TopTop