Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Ashadze-2 hydrothermal field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 18948 KB  
Article
Trace Element Geochemistry of Sulfides from the Ashadze-2 Hydrothermal Field (12°58′ N, Mid-Atlantic Ridge): Influence of Host Rocks, Formation Conditions or Seawater?
by Irina Melekestseva, Valery Maslennikov, Gennady Tret’yakov, Svetlana Maslennikova, Leonid Danyushevsky, Vasily Kotlyarov, Ross Large, Victor Beltenev and Pavel Khvorov
Minerals 2020, 10(9), 743; https://doi.org/10.3390/min10090743 - 22 Aug 2020
Cited by 17 | Viewed by 3732
Abstract
The trace element (TS) composition of isocubanite, chalcopyrite, pyrite, bornite, and covellite from oxidized Cu-rich massive sulfides of the Ashadze-2 hydrothermal field (12°58′ N, Mid-Atlantic Ridge) is studied using LA-ICP-MS. The understanding of TE behavior, which depends on the formation conditions and the [...] Read more.
The trace element (TS) composition of isocubanite, chalcopyrite, pyrite, bornite, and covellite from oxidized Cu-rich massive sulfides of the Ashadze-2 hydrothermal field (12°58′ N, Mid-Atlantic Ridge) is studied using LA-ICP-MS. The understanding of TE behavior, which depends on the formation conditions and the mode of TE occurrence, in sulfides is important, since they are potential sources for byproduct TEs. Isocubanite has the highest Co contents). Chalcopyrite concentrates most Au. Bornite has the highest amounts of Se, Sn, and Te. Crystalline pyrite is a main carrier of Mn. Covellite after isocubanite is a host to the highest Sr, Ag, and Bi contents. Covellite after pyrite accumulates V, Ga and In. The isocubanite+chalcopyrite aggregates in altered gabrro contain the highest amounts of Ni, Zn, As, Mo, Cd, Sb (166 ppm), Tl, and Pb. The trace element geochemistry of sulfides is mainly controlled by local formation conditions. Submarine oxidation results in the formation of covellite and its enrichment in most trace elements relative to primary sulfides. This is a result of incorporation of seawater-derived elements and seawater-affected dissolution of accessory minerals (native gold, galena and clausthalite). Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

20 pages, 3625 KB  
Article
Composition and Formation of Gabbro-Peridotite Hosted Seafloor Massive Sulfide Deposits from the Ashadze-1 Hydrothermal Field, Mid-Atlantic Ridge
by Anna Firstova, Tamara Stepanova, Georgy Cherkashov, Alexey Goncharov and Svetlana Babaeva
Minerals 2016, 6(1), 19; https://doi.org/10.3390/min6010019 - 8 Mar 2016
Cited by 28 | Viewed by 9482
Abstract
This paper presents mineralogical and geochemical data on seafloor massive sulfides (SMS) from the Ashadze-1 hydrothermal field at the Mid-Atlantic Ridge (MAR). The Ashadze-1 deposit is associated with the uplifted lower crust and upper mantle (oceanic core complex, OCC) of the MAR segment [...] Read more.
This paper presents mineralogical and geochemical data on seafloor massive sulfides (SMS) from the Ashadze-1 hydrothermal field at the Mid-Atlantic Ridge (MAR). The Ashadze-1 deposit is associated with the uplifted lower crust and upper mantle (oceanic core complex, OCC) of the MAR segment characterized by asymmetric mode of accretion. The OCC is represented by deep-seated gabbro-peridotite rocks exhumed on the rift valley slope along the detachment fault, during seafloor spreading. Hydrothermal processes in OCC environments result in different deposit composition and morphology compared to basalt-hosted systems. Abundant chimneys and enrichment in particular metals, including copper, zinc, gold, cobalt and tin are typical for this type of SMS deposit. The Ashadze-1 deposit is considered an example of a hydrothermal system in the initial stage of evolution marked by the young age of the sulfides (<7.2 kyr). The mineralogy of Ashadze-1 reflects primary ore-forming processes unaffected by post formation alteration. We propose a model for the primary ore-forming hydrothermal process in an ultramafic-hosted environment on the modern seafloor. Full article
(This article belongs to the Special Issue Marine Minerals: From Genesis to Resources)
Show Figures

Graphical abstract

Back to TopTop