Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Argyresthia conjugella

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3247 KB  
Article
Distribution and Prolonged Diapause of the Rowan Seed Predators Argyresthia conjugella (Lepidoptera: Yponomeutidae) and Megastigmus brevicaudis (Hymenoptera: Torymidae) and their Parasitoids in Norway
by Nina Trandem, Karin Westrum, Trond Hofsvang and Sverre Kobro
Forests 2023, 14(4), 847; https://doi.org/10.3390/f14040847 - 20 Apr 2023
Cited by 2 | Viewed by 2269
Abstract
The seed predator Argyresthia conjugella Zeller has rowan as its preferred host plant. In years of poor fruiting in rowan, it oviposits on apples. To improve the knowledge of this apple pest, rowanberries were collected from localities all over Norway from 1971 to [...] Read more.
The seed predator Argyresthia conjugella Zeller has rowan as its preferred host plant. In years of poor fruiting in rowan, it oviposits on apples. To improve the knowledge of this apple pest, rowanberries were collected from localities all over Norway from 1971 to 1985, and seed predators and their parasitoids were allowed to emerge for up to five years. Two species of seed predators, A. conjugella and Megastimus brevicaudis Ratzeburg, and seven species of parasitic Hymenoptera were common. The distribution of these species is shown on EIS (European Invertebrate Survey) maps of Norway. The biology of the parasitoids is summarized based on the published literature and their behavior during emergence. The tendency for delayed emergence, which is an indication of prolonged diapause, was more pronounced in M. brevicaudis than in A. conjugella, the former appearing in all five years. Five of the parasitoids also delayed their emergence, and three of them to a high degree, up to five years. Prolonged diapause must be taken into account in studies of rowanberry insect guilds. Full article
(This article belongs to the Special Issue Biodiversity and Ecology of Organisms Associated with Woody Plants)
Show Figures

Figure 1

14 pages, 10207 KB  
Article
Monitoring of the Apple Fruit Moth: Detection of Genetic Variation and Structure Applying a Novel Multiplex Set of 19 STR Markers
by Abdelhameed Elameen, Hans Geir Eiken, Ida Fløystad, Geir Knudsen and Snorre B. Hagen
Molecules 2018, 23(4), 850; https://doi.org/10.3390/molecules23040850 - 8 Apr 2018
Cited by 2 | Viewed by 4604
Abstract
The apple fruit moth Argyresthia conjugella (Lepidoptera, Yponomeutidae) is a seed predator of rowan (Sorbus aucuparia) and is distributed in Europe and Asia. In Fennoscandia (Finland, Norway and Sweden), rowan fruit production is low every 2–4 years, and apple (Malus [...] Read more.
The apple fruit moth Argyresthia conjugella (Lepidoptera, Yponomeutidae) is a seed predator of rowan (Sorbus aucuparia) and is distributed in Europe and Asia. In Fennoscandia (Finland, Norway and Sweden), rowan fruit production is low every 2–4 years, and apple (Malus domestica) functions as an alternative host, resulting in economic loss in apple crops in inter-mast years. We have used Illumina MiSeq sequencing to identify a set of 19 novel tetra-nucleotide short tandem repeats (STRs) in Argyresthia conjugella. Such motifs are recommended for genetic monitoring, which may help to determine the eco-evolutionary processes acting on this pest insect. The 19 STRs were optimized and amplified into five multiplex PCR reactions. We tested individuals collected from Norway and Sweden (n = 64), and detected very high genetic variation (average 13.6 alleles, He = 0.75) compared to most other Lepidoptera species studied so far. Spatial genetic differentiation was low and gene flow was high in the test populations, although two non-spatial clusters could be detected. We conclude that this set of genetic markers may be a useful resource for population genetic monitoring of this economical important insect species. Full article
Show Figures

Figure 1

12 pages, 1794 KB  
Article
Genetic Diversity in Apple Fruit Moth Indicate Different Clusters in the Two Most Important Apple Growing Regions of Norway
by Abdelhameed Elameen, Hans Geir Eiken and Geir K. Knudsen
Diversity 2016, 8(2), 10; https://doi.org/10.3390/d8020010 - 13 Apr 2016
Cited by 7 | Viewed by 5996
Abstract
The apple fruit moth (Argyresthia conjugella (A. conjugella)) in Norway was first identified as a pest in apple production in 1899. We here report the first genetic analysis of A. conjugella using molecular markers. Amplified fragment length polymorphism (AFLP) analysis [...] Read more.
The apple fruit moth (Argyresthia conjugella (A. conjugella)) in Norway was first identified as a pest in apple production in 1899. We here report the first genetic analysis of A. conjugella using molecular markers. Amplified fragment length polymorphism (AFLP) analysis was applied to 95 individuals from six different locations in the two most important apple-growing regions of Norway. Five AFLP primer combinations gave 410 clear polymorphic bands that distinguished all the individuals. Further genetic analysis using the Dice coefficient, Principal Coordinate analysis (PCO) and Bayesian analyses suggested clustering of the individuals into two main groups showing substantial genetic distance. Analysis of molecular variance (AMOVA) revealed greater variation among populations (77.94%) than within populations (22.06%) and significant and high FST values were determined between the two major regions (Distance = 230 km, FST = 0.780). AFLP analysis revealed low to moderate genetic diversity in our population sample from Norway (Average: 0.31 expected heterozygosity). The positive significant correlation between the geographic and the molecular data (r2 = 0.6700) indicate that genetic differences between the two major regions may be due to geographical barriers such as high mountain plateaus (Hardangervidda) in addition to isolation by distance (IBD). Full article
Show Figures

Figure 1

Back to TopTop