Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Aglantha digitale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1840 KiB  
Article
Seasonal Changes in Vertical Distribution and Population Structure of the Dominant Hydrozoan Aglantha digitale in the Western Subarctic Pacific
by Mari Aizawa, Tian Gao and Atsushi Yamaguchi
Oceans 2023, 4(3), 242-252; https://doi.org/10.3390/oceans4030017 - 31 Jul 2023
Viewed by 2426
Abstract
Hydrozoans are numerically dominant taxa in gelatinous zooplankton communities of the worldwide oceans and play an energy transfer role connecting primary producers and higher trophic level organisms. In the western subarctic Pacific, St. K2 has been established as a long-term time-series monitoring station. [...] Read more.
Hydrozoans are numerically dominant taxa in gelatinous zooplankton communities of the worldwide oceans and play an energy transfer role connecting primary producers and higher trophic level organisms. In the western subarctic Pacific, St. K2 has been established as a long-term time-series monitoring station. Various studies on zooplankton have been conducted, while hydrozoans have not been treated. This study presents the abundance, vertical distribution, and population structure of the dominant hydrozoan species (Aglantha digitale) at St. K2. Samples collected by vertical stratification samplings from eight layers of 0–1000 m both day and night during four seasons in one year. Hydrozoans occur throughout the year. The annual mean abundance of A. digitale was 198.4 ind. m−2 and composed of 91.9% of hydrozoans. The vertical distribution of A. digitale was concentrated for the epipelagic layer (0–200 m), both day and night of the most season. The bell height (BH) of A. digitale ranged between 2.4–18.9 mm. Most of the mature individuals, with gonad length larger than 10% of BH, occurred only in July. The BH of mature individuals ranged from 4.7 to 17.6 mm, with the BH of most mature individuals were larger than >10 mm. Through observation on BH at each sampling layer, small individuals with BH < 6 mm were distributed below 300 m depths throughout the seasons, expanding their vertical distribution to the deeper layers. Inter-region comparison of abundance, maturation body size, and generation length of A. digitale revealed that these parameters are varied with the region and depend on the marine ecosystem structures. Full article
Show Figures

Figure 1

17 pages, 3726 KiB  
Article
Species Composition and Distribution of Jellyfish in a Seasonally Hypoxic Estuary, Hood Canal, Washington
by BethElLee Herrmann and Julie E. Keister
Diversity 2020, 12(2), 53; https://doi.org/10.3390/d12020053 - 29 Jan 2020
Cited by 1 | Viewed by 3917
Abstract
Seasonal hypoxia (≤2 mg dissolved oxygen L−1) can have detrimental effects on marine food webs. Recent studies indicate that some jellyfish can tolerate low oxygen and may have a competitive advantage over other zooplankton and fishes in those environments. We assessed [...] Read more.
Seasonal hypoxia (≤2 mg dissolved oxygen L−1) can have detrimental effects on marine food webs. Recent studies indicate that some jellyfish can tolerate low oxygen and may have a competitive advantage over other zooplankton and fishes in those environments. We assessed community structure and distributions of cnidarian and ctenophore jellyfish in seasonally hypoxic Hood Canal, WA, USA, at four stations that differed in oxygen conditions. Jellyfish were collected in June through October 2012 and 2013 using full-water-column and discrete-depth net tows, concurrent with CTD casts to measure dissolved oxygen (DO). Overall, southern, more hypoxic, regions of Hood Canal had higher abundances and higher diversity than the northern regions, particularly during the warmer and more hypoxic year of 2013. Of fifteen species identified, the most abundant—the siphonophore Muggiaea atlantica and hydrozoan Aglantha digitale—reached peak densities > 1800 Ind m−3 and 38 Ind m−3, respectively. M. atlantica were much more abundant at the hypoxic stations, whereas A. digitale were also common in the north. Vertical distributions explored during hypoxia showed that jellyfish were mostly in the upper 10 m regardless of the oxycline depth. Moderate hypoxia seemed to have no detrimental effect on jellyfish in Hood Canal, and may have resulted in high population densities, which could influence essential fisheries and trophic energy flow. Full article
(This article belongs to the Special Issue The Effects of Hypoxia on Marine Food Webs and Ecosystems)
Show Figures

Figure 1

Back to TopTop