Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Actinokineospora

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1338 KiB  
Article
The Discovery of Actinospene, a New Polyene Macrolide with Broad Activity against Plant Fungal Pathogens and Pathogenic Yeasts
by Ying Tang, Cuiyang Zhang, Tianqi Cui, Ping Lei, Zhaohui Guo, Hailong Wang and Qingshu Liu
Molecules 2021, 26(22), 7020; https://doi.org/10.3390/molecules26227020 - 20 Nov 2021
Cited by 3 | Viewed by 2741
Abstract
Phytopathogenic fungi infect crops, presenting a worldwide threat to agriculture. Polyene macrolides are one of the most effective antifungal agents applied in human therapy and crop protection. In this study, we found a cryptic polyene biosynthetic gene cluster in Actinokineospora spheciospongiae by genome [...] Read more.
Phytopathogenic fungi infect crops, presenting a worldwide threat to agriculture. Polyene macrolides are one of the most effective antifungal agents applied in human therapy and crop protection. In this study, we found a cryptic polyene biosynthetic gene cluster in Actinokineospora spheciospongiae by genome mining. Then, this gene cluster was activated via varying fermentation conditions, leading to the discovery of new polyene actinospene (1), which was subsequently isolated and its structure determined through spectroscopic techniques including UV, HR-MS, and NMR. The absolute configuration was confirmed by comparing the calculated and experimental electronic circular dichroism (ECD) spectra. Unlike known polyene macrolides, actinospene (1) demonstrated more versatile post-assembling decorations including two epoxide groups and an unusual isobutenyl side chain. In bioassays, actinospene (1) showed a broad spectrum of antifungal activity against several plant fungal pathogens as well as pathogenic yeasts with minimum inhibitory concentrations ranging between 2 and 10 μg/mL. Full article
(This article belongs to the Special Issue Phenotypic Screening)
Show Figures

Figure 1

14 pages, 1358 KiB  
Article
Bio-Guided Isolation of Antimalarial Metabolites from the Coculture of Two Red Sea Sponge-Derived Actinokineospora and Rhodococcus spp.
by Hani A. Alhadrami, Bathini Thissera, Marwa H. A. Hassan, Fathy A. Behery, Che Julius Ngwa, Hossam M. Hassan, Gabriele Pradel, Usama Ramadan Abdelmohsen and Mostafa E. Rateb
Mar. Drugs 2021, 19(2), 109; https://doi.org/10.3390/md19020109 - 12 Feb 2021
Cited by 23 | Viewed by 4785
Abstract
Coculture is a productive technique to trigger microbes’ biosynthetic capacity by mimicking the natural habitats’ features principally by competition for food and space and interspecies cross-talks. Mixed cultivation of two Red Sea-derived actinobacteria, Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp. UR59, resulted in [...] Read more.
Coculture is a productive technique to trigger microbes’ biosynthetic capacity by mimicking the natural habitats’ features principally by competition for food and space and interspecies cross-talks. Mixed cultivation of two Red Sea-derived actinobacteria, Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp. UR59, resulted in the induction of several non-traced metabolites in their axenic cultures, which were detected using LC–HRMS metabolomics analysis. Antimalarial guided isolation of the cocultured fermentation led to the isolation of the angucyclines actinosporins E (1), H (2), G (3), tetragulol (5) and the anthraquinone capillasterquinone B (6), which were not reported under axenic conditions. Interestingly, actinosporins were previously induced when the axenic culture of the Actinokineospora spheciospongiae strain EG49 was treated with signalling molecule N-acetyl-d-glucosamine (GluNAc); this finding confirmed the effectiveness of coculture in the discovery of microbial metabolites yet to be discovered in the axenic fermentation with the potential that could be comparable to adding chemical signalling molecules in the fermentation flask. The isolated angucycline and anthraquinone compounds exhibited in vitro antimalarial activity and good biding affinity against lysyl-tRNA synthetase (PfKRS1), highlighting their potential developability as new antimalarial structural motif. Full article
(This article belongs to the Special Issue Bioactive Natural Products from the Red Sea)
Show Figures

Figure 1

17 pages, 2824 KiB  
Article
Induction of Antibacterial Metabolites by Co-Cultivation of Two Red-Sea-Sponge-Associated Actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49
by Mohamed S. Hifnawy, Hossam M. Hassan, Rabab Mohammed, Mohamed M. Fouda, Ahmed M. Sayed, Ahmed A. Hamed, Sameh F. AbouZid, Mostafa E. Rateb, Hani A. Alhadrami and Usama Ramadan Abdelmohsen
Mar. Drugs 2020, 18(5), 243; https://doi.org/10.3390/md18050243 - 5 May 2020
Cited by 43 | Viewed by 6179
Abstract
Liquid chromatography coupled with high resolution mass spectrometry (LC-HRESMS)-assisted metabolomic profiling of two sponge-associated actinomycetes, Micromonospora sp. UR56 and Actinokineospora sp. EG49, revealed that the co-culture of these two actinomycetes induced the accumulation of metabolites that were not traced in their axenic cultures. [...] Read more.
Liquid chromatography coupled with high resolution mass spectrometry (LC-HRESMS)-assisted metabolomic profiling of two sponge-associated actinomycetes, Micromonospora sp. UR56 and Actinokineospora sp. EG49, revealed that the co-culture of these two actinomycetes induced the accumulation of metabolites that were not traced in their axenic cultures. Dereplication suggested that phenazine-derived compounds were the main induced metabolites. Hence, following large-scale co-fermentation, the major induced metabolites were isolated and structurally characterized as the already known dimethyl phenazine-1,6-dicarboxylate (1), phenazine-1,6-dicarboxylic acid mono methyl ester (phencomycin; 2), phenazine-1-carboxylic acid (tubermycin; 3), N-(2-hydroxyphenyl)-acetamide (9), and p-anisamide (10). Subsequently, the antibacterial, antibiofilm, and cytotoxic properties of these metabolites (13, 9, and 10) were determined in vitro. All the tested compounds except 9 showed high to moderate antibacterial and antibiofilm activities, whereas their cytotoxic effects were modest. Testing against Staphylococcus DNA gyrase-B and pyruvate kinase as possible molecular targets together with binding mode studies showed that compounds 13 could exert their bacterial inhibitory activities through the inhibition of both enzymes. Moreover, their structural differences, particularly the substitution at C-1 and C-6, played a crucial role in the determination of their inhibitory spectra and potency. In conclusion, the present study highlighted that microbial co-cultivation is an efficient tool for the discovery of new antimicrobial candidates and indicated phenazines as potential lead compounds for further development as antibiotic scaffold. Full article
(This article belongs to the Special Issue Bioactive Natural Products from the Red Sea)
Show Figures

Graphical abstract

16 pages, 2426 KiB  
Article
The Draft Genome Sequence of Actinokineospora bangkokensis 44EHWT Reveals the Biosynthetic Pathway of the Antifungal Thailandin Compounds with Unusual Butylmalonyl-CoA Extender Units
by Anja Greule, Bungonsiri Intra, Stephan Flemming, Marcel G. E. Rommel, Watanalai Panbangred and Andreas Bechthold
Molecules 2016, 21(11), 1607; https://doi.org/10.3390/molecules21111607 - 23 Nov 2016
Cited by 5 | Viewed by 7960
Abstract
We report the draft genome sequence of Actinokineospora bangkokensis 44EHWT, the producer of the antifungal polyene compounds, thailandins A and B. The sequence contains 7.45 Mb, 74.1% GC content and 35 putative gene clusters for the biosynthesis of secondary metabolites. There [...] Read more.
We report the draft genome sequence of Actinokineospora bangkokensis 44EHWT, the producer of the antifungal polyene compounds, thailandins A and B. The sequence contains 7.45 Mb, 74.1% GC content and 35 putative gene clusters for the biosynthesis of secondary metabolites. There are three gene clusters encoding large polyketide synthases of type I. Annotation of the ORF functions and targeted gene disruption enabled us to identify the cluster for thailandin biosynthesis. We propose a plausible biosynthetic pathway for thailandin, where the unusual butylmalonyl-CoA extender unit is incorporated and results in an untypical side chain. Full article
(This article belongs to the Special Issue Genomics-based Discovery of Microbial Natural Products)
Show Figures

Figure 1

14 pages, 781 KiB  
Article
Production of Induced Secondary Metabolites by a Co-Culture of Sponge-Associated Actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163
by Yousef Dashti, Tanja Grkovic, Usama Ramadan Abdelmohsen, Ute Hentschel and Ronald J. Quinn
Mar. Drugs 2014, 12(5), 3046-3059; https://doi.org/10.3390/md12053046 - 22 May 2014
Cited by 117 | Viewed by 15035
Abstract
Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by 1H NMR. Ten known compounds, including angucycline, diketopiperazine and β-carboline derivatives 110, were isolated from the EtOAc [...] Read more.
Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced metabolites monitored by 1H NMR. Ten known compounds, including angucycline, diketopiperazine and β-carboline derivatives 110, were isolated from the EtOAc extracts of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three natural products that were not detected in the single culture of either microorganism, namely N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) and 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). When tested for biological activity against a range of bacteria and parasites, only the phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as an effective strategy to access the bioactive secondary metabolites hidden in the genomes of marine actinomycetes. Full article
Show Figures

Graphical abstract

25 pages, 11685 KiB  
Article
Dereplication Strategies for Targeted Isolation of New Antitrypanosomal Actinosporins A and B from a Marine Sponge Associated-Actinokineospora sp. EG49
by Usama Ramadan Abdelmohsen, Cheng Cheng, Christina Viegelmann, Tong Zhang, Tanja Grkovic, Safwat Ahmed, Ronald J. Quinn, Ute Hentschel and RuAngelie Edrada-Ebel
Mar. Drugs 2014, 12(3), 1220-1244; https://doi.org/10.3390/md12031220 - 6 Mar 2014
Cited by 148 | Viewed by 13954
Abstract
High resolution Fourier transform mass spectrometry (HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy were employed as complementary metabolomic tools to dereplicate the chemical profile of the new and antitrypanosomally active sponge-associated bacterium Actinokineospora sp. EG49 extract. Principal Component (PCA), hierarchical clustering (HCA), and [...] Read more.
High resolution Fourier transform mass spectrometry (HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy were employed as complementary metabolomic tools to dereplicate the chemical profile of the new and antitrypanosomally active sponge-associated bacterium Actinokineospora sp. EG49 extract. Principal Component (PCA), hierarchical clustering (HCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) were used to evaluate the HRFTMS and NMR data of crude extracts from four different fermentation approaches. Statistical analysis identified the best culture one-strain-many-compounds (OSMAC) condition and extraction procedure, which was used for the isolation of novel bioactive metabolites. As a result, two new O-glycosylated angucyclines, named actinosporins A (1) and B (2), were isolated from the broth culture of Actinokineospora sp. strain EG49, which was cultivated from the Red Sea sponge Spheciospongia vagabunda. The structures of actinosporins A and B were determined by 1D- and 2D-NMR techniques, as well as high resolution tandem mass spectrometry. Testing for antiparasitic properties showed that actinosporin A exhibited activity against Trypanosoma brucei brucei with an IC50 value of 15 µM; however no activity was detected against Leishmania major and Plasmodium falciparum, therefore suggesting its selectivity against the parasite Trypanosoma brucei brucei; the causative agent of sleeping sickness. Full article
Show Figures

Graphical abstract

Back to TopTop