Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = AVILNet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 10384 KB  
Article
AVILNet: A New Pliable Network with a Novel Metric for Small-Object Segmentation and Detection in Infrared Images
by Ikhwan Song and Sungho Kim
Remote Sens. 2021, 13(4), 555; https://doi.org/10.3390/rs13040555 - 4 Feb 2021
Cited by 14 | Viewed by 4185
Abstract
Infrared small-object segmentation (ISOS) has a persistent trade-off problem—that is, which came first, recall or precision? Constructing a fine balance between of them is, au fond, of vital importance to obtain the best performance in real applications, such as surveillance, tracking, and many [...] Read more.
Infrared small-object segmentation (ISOS) has a persistent trade-off problem—that is, which came first, recall or precision? Constructing a fine balance between of them is, au fond, of vital importance to obtain the best performance in real applications, such as surveillance, tracking, and many fields related to infrared searching and tracking. F1-score may be a good evaluation metric for this problem. However, since the F1-score only depends upon a specific threshold value, it cannot reflect the user’s requirements according to the various application environment. Therefore, several metrics are commonly used together. Now we introduce F-area, a novel metric for a panoptic evaluation of average precision and F1-score. It can simultaneously consider the performance in terms of real application and the potential capability of a model. Furthermore, we propose a new network, called the Amorphous Variable Inter-located Network (AVILNet), which is of pliable structure based on GridNet, and it is also an ensemble network consisting of the main and its sub-network. Compared with the state-of-the-art ISOS methods, our model achieved an AP of 51.69%, F1-score of 63.03%, and F-area of 32.58% on the International Conference on Computer Vision 2019 ISOS Single dataset by using one generator. In addition, an AP of 53.6%, an F1-score of 60.99%, and F-area of 32.69% by using dual generators, with beating the existing best record (AP, 51.42%; F1-score, 57.04%; and F-area, 29.33%). Full article
Show Figures

Graphical abstract

Back to TopTop