Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = ASPC-DSC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2901 KB  
Article
Red Tide Detection Method Based on a Time Series Fusion Network Model: A Case Study of GOCI Data in the East China Sea
by Tianhong Ding, Zhiqiang Xu, Yunjie Wang, Qinglian Hou, Xiangyong Liu and Fengshuang Ma
Sensors 2025, 25(11), 3455; https://doi.org/10.3390/s25113455 - 30 May 2025
Viewed by 624
Abstract
In China’s coastal regions, severe seawater eutrophication has led to frequent occurrences of red tides, causing significant damage to marine fisheries and aquatic resources. Therefore, red tide detection and prediction are of great research importance. Although current deep learning-based red tide detection methods [...] Read more.
In China’s coastal regions, severe seawater eutrophication has led to frequent occurrences of red tides, causing significant damage to marine fisheries and aquatic resources. Therefore, red tide detection and prediction are of great research importance. Although current deep learning-based red tide detection methods perform well in detecting single-day red tides, they struggle with continuous multi-day detection due to insufficient mining of temporal features and difficulties in accurately capturing dynamic variations, limiting further improvements in detection accuracy. To address these issues, this study proposes a time-series fusion network model (CSF-RTDNet) for red tide detection using time-continuous GOCI data from the East China Sea. By integrating multi-temporal GOCI data, the model comprehensively captures spatiotemporal characteristics of red tides, enhancing dynamic process modeling. The CSF-RTDNet method improves feature discrimination by introducing NDVI to enhance red tide characteristics and increase separability between red tides and seawater. Additionally, an ECA channel attention mechanism is employed to fully exploit spectral features across different bands for deeper feature extraction. A novel feature extraction module, ASPC-DSC, combines atrous spatial pyramid convolution with depthwise separable convolution to effectively fuse multi-scale contextual features while improving computational efficiency. Furthermore, ConvLSTM is introduced to integrate temporal and spatial features, effectively addressing the insufficient mining of sequential characteristics in multi-day red tide detection. Experimental results demonstrate that CSF-RTDNet achieves robust detection of red tides with complex boundaries and continuous temporal patterns, attaining an accuracy of 95.89%, precision of 93.03%, recall of 96.34%, and a Kappa coefficient of 0.95. This method significantly enhances red tide detection accuracy and provides valuable technical support for marine environmental monitoring. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop