Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 6-O-glycolchitosan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1867 KiB  
Article
Targeting Intracranial Tumours with a Combination of RNA and Chemotherapy
by Abdulhamid S. Fatani, Andreas G. Schätzlein and Ijeoma F. Uchegbu
Pharmaceutics 2024, 16(6), 829; https://doi.org/10.3390/pharmaceutics16060829 - 18 Jun 2024
Viewed by 1516
Abstract
Glioblastoma multiforme (GBM) is a fast-growing and aggressive brain tumour, which remains largely resistant to treatment; the prognosis for patients is poor, with a median survival time of about 12–18 months, post diagnosis. In an effort to bring more efficacious treatments to patients, [...] Read more.
Glioblastoma multiforme (GBM) is a fast-growing and aggressive brain tumour, which remains largely resistant to treatment; the prognosis for patients is poor, with a median survival time of about 12–18 months, post diagnosis. In an effort to bring more efficacious treatments to patients, we targeted the down regulation of ITCH, an E3 ligase that is overexpressed in a variety of cancers, and which inhibits P73, a tumour suppressor gene. 6-O-glycolchitosan (GC) was used to deliver siRNA ITCH (GC60-siRNA-ITCH) and gemcitabine via the nose to brain route in CD-1 nude mice which had previously been implanted intracranially with U87-MG-luc2 cells. Prior to this in vivo study, an in vitro study established the synergistic effect of siRNA-ITCH in combination with a chemotherapy drug—gemcitabine. A downregulation of ITCH, an upregulation of p73 and enhanced apoptosis were observed in vitro in U87-MG cells, using qPCR, Western blot analysis, confocal laser scanning microscopy, flow cytometry and cytotoxicity assays. When GC60-siRNA-ITCH was combined with gemcitabine, there was a resultant decrease in cell proliferation in vitro. In CD1 mice, the administration of siRNA-ITCH (7 doses of 0.081 mg/kg) alone did not significantly affect animal survival (increasing mean survival from 29 to 33 days when compared to untreated animals), whereas intranasal gemcitabine had a significant effect on survival (increasing survival from 29 to 45 days when compared to untreated animals, p < 0.01). The most significant effect was seen with combination therapy (GC60-siRNA-ITCH plus gemcitabine), where survival increased by 89%, increasing from 29 to 54 days (p < 0.01). Our data demonstrate that siRNA chemosensitises brain tumours to gemcitabine and that the nose-to-brain delivery route may be a viable route for the treatment of intracranial tumours. Full article
Show Figures

Figure 1

11 pages, 1532 KiB  
Article
Amphotericin B Polymer Nanoparticles Show Efficacy against Candida Species Biofilms
by Abdulghani Alakkad, Paul Stapleton, Corinna Schlosser, Sudaxshina Murdan, Uchechukwu Odunze, Andreas Schatzlein and Ijeoma F. Uchegbu
Pathogens 2022, 11(1), 73; https://doi.org/10.3390/pathogens11010073 - 7 Jan 2022
Cited by 12 | Viewed by 2910
Abstract
Purpose: Chronic infections of Candida albicans are characterised by the embedding of budding and entwined filamentous fungal cells into biofilms. The biofilms are refractory to many drugs and Candida biofilms are associated with ocular fungal infections. The objective was to test the activity [...] Read more.
Purpose: Chronic infections of Candida albicans are characterised by the embedding of budding and entwined filamentous fungal cells into biofilms. The biofilms are refractory to many drugs and Candida biofilms are associated with ocular fungal infections. The objective was to test the activity of nanoparticulate amphotericin B (AmB) against Candida biofilms. Methods: AmB was encapsulated in the Molecular Envelope Technology (MET, N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan) nanoparticles and tested against Candida biofilms in vitro. Confocal laser scanning microscopy (CLSM) imaging of MET nanoparticles’ penetration into experimental biofilms was carried out and a MET-AmB eye drop formulation was tested for its stability. Results: MET-AmB formulations demonstrated superior activity towards C. albicans biofilms in vitro with the EC50 being ~30 times lower than AmB alone (EC50 MET-AmB = 1.176 μg mL−1, EC50 AmB alone = 29.09 μg mL−1). A similar superior activity was found for Candida glabrata biofilms, where the EC50 was ~10× lower than AmB alone (EC50 MET-AmB = 0.0253 μg mL−1, EC50 AmB alone = 0.289 μg mL−1). CLSM imaging revealed that MET nanoparticles penetrated through the C. albicans biofilm matrix and bound to fungal cells. The activity of MET-AmB was no different from the activity of AmB alone against C. albicans cells in suspension (MET-AmB MIC90 = 0.125 μg mL−1, AmB alone MIC90 = 0.250 μg mL−1). MET-AmB eye drops were stable at room temperature for at least 28 days. Conclusions: These biofilm activity findings raise the possibility that MET-loaded nanoparticles may be used to tackle Candida biofilm infections, such as refractory ocular fungal infections. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

17 pages, 951 KiB  
Article
Polymeric Micelles for the Enhanced Deposition of Hydrophobic Drugs into Ocular Tissues, without Plasma Exposure
by Ijeoma F. Uchegbu, Jan Breznikar, Alessandra Zaffalon, Uche Odunze and Andreas G. Schätzlein
Pharmaceutics 2021, 13(5), 744; https://doi.org/10.3390/pharmaceutics13050744 - 18 May 2021
Cited by 13 | Viewed by 4018
Abstract
Commercial topical ocular formulations for hydrophobic actives rely on the use of suspensions or oil in water emulsions and neither of these formulation modalities adequately promote drug penetration into ocular tissues. Using the ocular relevant hydrophobic drug, cyclosporine A (CsA), a non-irritant ocular [...] Read more.
Commercial topical ocular formulations for hydrophobic actives rely on the use of suspensions or oil in water emulsions and neither of these formulation modalities adequately promote drug penetration into ocular tissues. Using the ocular relevant hydrophobic drug, cyclosporine A (CsA), a non-irritant ocular penetration enhancer is showcased, which may be used for the formulation of hydrophobic actives. The activity of this penetration enhancer is demonstrated in a healthy rabbit model. The Molecular Envelope Technology (MET) polymer (N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan), a self-assembling, micelle-forming polymer, was used to formulate CsA into sterile filtered nanoparticulate eye drop formulations and the stability of the formulation tested. Healthy rabbits were dosed with a single dose of a MET–CsA (NM133) 0.05% formulation and ocular tissues analyzed. Optically clear NM133 formulations were prepared containing between 0.01–0.1% w/v CsA and 0.375–0.75% w/v MET polymer. NM133 0.01%, NM133 0.02% and NM133 0.05% were stable for 28 days when stored at refrigeration temperature (5–6 °C) and room temperature (16–23 °C), but there was evidence of evaporation of the formulation at 40 °C. There was no change in drug content when NM133 0.05% was stored for 387 days at 4 °C. On topical dosing to rabbits, corneal, conjunctival and scleral AUC0–24 levels were 25,780 ng.h g−1, 12,046 ng.h g−1 and 5879 ng.h g−1, respectively, with NM133 0.05%. Meanwhile, a similar dose of Restasis 0.05% yielded lower values of 4726 ng.h/g, 4813 ng.h/g and 1729 ng.h/g for the drug corneal, conjunctival and scleral levels, respectively. NM133 thus delivered up to five times more CsA to the ocular surface tissues when compared to Restasis. The MET polymer was non-irritant up to a concentration of 4% w/v. The MET polymer is a non-irritant ocular penetration enhancer that may be used to deliver hydrophobic drugs in optically clear topical ocular formulations. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop