Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 2-aza-Cope rearrangement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2052 KB  
Article
Systematic Screening of Trigger Moieties for Designing Formaldehyde Fluorescent Probes and Application in Live Cell Imaging
by Yin Jiang, Shumei Huang, Minghui Liu, Zejun Li, Weimin Xiao, Huatang Zhang, Liu Yang and Hongyan Sun
Biosensors 2022, 12(10), 855; https://doi.org/10.3390/bios12100855 - 10 Oct 2022
Cited by 3 | Viewed by 2479
Abstract
Formaldehyde (FA) is involved in multiple physiological regulatory processes and plays a crucial role in memory storage. Meanwhile, FA has a notorious reputation as a toxic compound, and it will cause a variety of diseases if its level is unbalanced in the human [...] Read more.
Formaldehyde (FA) is involved in multiple physiological regulatory processes and plays a crucial role in memory storage. Meanwhile, FA has a notorious reputation as a toxic compound, and it will cause a variety of diseases if its level is unbalanced in the human body. To date, there have been numerous fluorescent probes for FA imaging reported. Among them, the probes based on the 2−aza−Cope rearrangement have attracted the most attention, and their applications in cell imaging have been greatly expanded. Herein, we screened the various trigger moieties of FA fluorescent probes based on the mechanism of 2−aza−Cope rearrangement. FA−2, in which a fluorophore is connected to a 4−nitrobenzylamine group and an allyl group, demonstrated the highest sensitivity, selectivity, and reaction kinetics. Furthermore, FA−Lyso, derived from FA−2, has been successfully designed and applied to monitor exogenous and endogenous FA fluctuations in lysosomes of living cells. Full article
(This article belongs to the Special Issue Advances in Bioimaging and Biosensing)
Show Figures

Figure 1

21 pages, 2362 KB  
Review
Approaches to Formaldehyde Measurement: From Liquid Biological Samples to Cells and Organisms
by Fedor A. Lipskerov, Ekaterina V. Sheshukova and Tatiana V. Komarova
Int. J. Mol. Sci. 2022, 23(12), 6642; https://doi.org/10.3390/ijms23126642 - 14 Jun 2022
Cited by 16 | Viewed by 7058
Abstract
Formaldehyde (FA) is the simplest aldehyde present both in the environment and in living organisms. FA is an extremely reactive compound capable of protein crosslinking and DNA damage. For a long time, FA was considered a “biochemical waste” and a by-product of normal [...] Read more.
Formaldehyde (FA) is the simplest aldehyde present both in the environment and in living organisms. FA is an extremely reactive compound capable of protein crosslinking and DNA damage. For a long time, FA was considered a “biochemical waste” and a by-product of normal cellular metabolism, but in recent decades the picture has changed. As a result, the need arose for novel instruments and approaches to monitor and measure not only environmental FA in water, cosmetics, and household products, but also in food, beverages and biological samples including cells and even organisms. Despite numerous protocols being developed for in vitro and in cellulo FA assessment, many of them have remained at the “proof-of-concept” stage. We analyze the suitability of different methods developed for non-biological objects, and present an overview of the recently developed approaches, including chemically-synthesized probes and genetically encoded FA-sensors for in cellulo and in vivo FA monitoring. We also discuss the prospects of classical methods such as chromatography and spectrophotometry, and how they have been adapted in response to the demand for precise, selective and highly sensitive evaluation of FA concentration fluctuations in biological samples. The main objectives of this review is to summarize data on the main approaches for FA content measurement in liquid biological samples, pointing out the advantages and disadvantages of each method; to report the progress in development of novel molecules suitable for application in living systems; and, finally, to discuss genetically encoded FA-sensors based on existing natural biological FA-responsive elements. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Figure 1

14 pages, 3480 KB  
Article
BET & ELF Quantum Topological Analysis of Neutral 2-Aza-Cope Rearrangement of γ-Alkenyl Nitrones
by Pedro Merino, Maria A. Chiacchio, Laura Legnani and Tomás Tejero
Molecules 2017, 22(8), 1371; https://doi.org/10.3390/molecules22081371 - 19 Aug 2017
Cited by 5 | Viewed by 6465
Abstract
The 2-Aza-Cope rearrangement of γ-alkenyl nitrones is a rare example of the neutral thermal 2-aza-Cope process that usually takes place with cationic species. During the rearrangement, a redistribution of bonds and electronic density occurs in one kinetic step. However, the introduction of substituents [...] Read more.
The 2-Aza-Cope rearrangement of γ-alkenyl nitrones is a rare example of the neutral thermal 2-aza-Cope process that usually takes place with cationic species. During the rearrangement, a redistribution of bonds and electronic density occurs in one kinetic step. However, the introduction of substituents with different steric requirements and electronic features might alter the activation energies and the synchronicity of the reaction. The electron localization function (ELF) analysis and its application to Bonding Evolution Theory (BET) analysis within the context of Molecular Electron Density Theory (MEDT) is an excellent tool to monitor the electron density along the reaction coordinate and thus investigate in detail bond breaking and formation and the corresponding energy barriers. By analyzing topological ELF calculations of seventeen 2-aza-Cope nitrone rearrangements with selected substituents, the main factors influencing the synchronicity of the process were investigated. This MEDT study results revealed that the rearrangement is a non-polar process mostly influenced by steric factors rather than by electronic ones, and confirms the pseudoradical character of the process rather than any pericyclic electron-reorganization. Full article
Show Figures

Graphical abstract

Back to TopTop