Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = 2-arylthio-2,3-dihydroquinazolin-4(1H)-one

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2796 KiB  
Article
Copper Catalyst-Supported Modified Magnetic Chitosan for the Synthesis of Novel 2-Arylthio-2,3-dihydroquinazolin-4(1H)-one Derivatives via Chan–Lam Coupling
by Nastaran Ghasemi, Ali Yavari, Saeed Bahadorikhalili, Ali Moazzam, Samanehsadat Hosseini, Bagher Larijani, Aida Iraji, Shahram Moradi and Mohammad Mahdavi
Inorganics 2022, 10(12), 231; https://doi.org/10.3390/inorganics10120231 - 29 Nov 2022
Cited by 9 | Viewed by 2174
Abstract
In this paper, magnetic chitosan is used as a support for the immobilization of copper catalyst (Cu@MChit). The fabricated catalyst is successfully synthesized and characterized by several techniques. The activity of Cu@MChit catalyst is evaluated in the synthesis of novel derivatives of 3-alkyl-2-arylthio-2,3-dihydroquinazolin-4(1 [...] Read more.
In this paper, magnetic chitosan is used as a support for the immobilization of copper catalyst (Cu@MChit). The fabricated catalyst is successfully synthesized and characterized by several techniques. The activity of Cu@MChit catalyst is evaluated in the synthesis of novel derivatives of 3-alkyl-2-arylthio-2,3-dihydroquinazolin-4(1H)-ones. The products are synthesized in three simple steps via Chan–Lam coupling reaction. The synthetic route is based on the reaction of isatoic anhydride and an amine, followed by the reaction with carbon disulfide. Cu@MChit-catalyzed reaction of the obtained intermediate with phenylboronic acid leads to the desired products. The scope of the reaction is confirmed by using various amine and phenylboronic acid derivatives and the products are obtained in high isolated yields. Full article
(This article belongs to the Special Issue Inorganics: 10th Anniversary)
Show Figures

Graphical abstract

Back to TopTop