Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = 2-amino-4-antipyrinylthiazole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2754 KiB  
Article
Synthesis, Modeling Study and Antioxidants Activity of New Heterocycles Derived from 4-Antipyrinyl-2-Chloroacetamidothiazoles
by Sraa Abu-Melha
Appl. Sci. 2018, 8(11), 2128; https://doi.org/10.3390/app8112128 - 2 Nov 2018
Cited by 7 | Viewed by 21155
Abstract
The present work reports the preparation of twelve new heterocyclic scaffolds containing an antipyrinyl-thiazole hybrid through the reaction of 4-antipyrinyl-2-chloroacetamido-thiazoles 1 and 6 with various types of nucleophiles, namely; ethyl thioglycolate, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, ammonium thiocyanate, malononitrile, and salicylaldehyde. The constructed compounds were characterized [...] Read more.
The present work reports the preparation of twelve new heterocyclic scaffolds containing an antipyrinyl-thiazole hybrid through the reaction of 4-antipyrinyl-2-chloroacetamido-thiazoles 1 and 6 with various types of nucleophiles, namely; ethyl thioglycolate, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, ammonium thiocyanate, malononitrile, and salicylaldehyde. The constructed compounds were characterized by conventional spectroscopic techniques (IR, 1H NMR, 13C NMR, and mass analysis). A DFT method (material studio package) was used to predict the geometry, bond lengths, bond angles, and dipole moments as well as other global chemical reactivities of the constructed antipyrinyl-thiazole compounds. Also, their semi-core pseudopods calculations (dspp) were carried out with DNP (double numerical basis sets plus polarization functional) to predict the properties of materials. In addition, the antioxidant activity of these antipyrinyl-thiazole scaffolds has been screened by the ABTS method. The results indicated that 2-(4-antipyrinylthiazolylamino)-5-substituitedbenzylidene-thiazol-4(5H)-ones 10b and 10c exhibited the best antioxidant activity with a percentage inhibition of 85.74% and 83.51%, respectively. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

Back to TopTop