Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = 1,2,3,4,5,6-hexa-O-acetyldulcitol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 311 KiB  
Article
The Triterpenes 3β-Lup-20(29)-en-3-ol and 3β-Lup-20(29)-en-3-yl Acetate and the Carbohydrate 1,2,3,4,5,6-Hexa-O-acetyl-dulcitol as Photosynthesis Light Reactions Inhibitors
by Djalma Menezes-de-Oliveira, Maria-Isabel Aguilar, Beatriz King-Díaz, Sidney Augusto Vieira-Filho, Lucinier Pains-Duarte, Grácia-Divina de Fátima Silva and Blas Lotina-Hennsen
Molecules 2011, 16(12), 9939-9956; https://doi.org/10.3390/molecules16129939 - 1 Dec 2011
Cited by 17 | Viewed by 8193
Abstract
Three compounds were isolated from Maytenus acanthophylla Reissek (Celastraceae): the pentacyclic triterpenes lup-20(29)-en-3β-ol (lupeol, 1) and 3β-lup-20(29)-en-3-yl acetate (2) and the carbohydrate 1,2,3,4,5,6-hexa-O-acetyldulcitol (3); lupeol was also isolated from Xylosma flexuosa. [...] Read more.
Three compounds were isolated from Maytenus acanthophylla Reissek (Celastraceae): the pentacyclic triterpenes lup-20(29)-en-3β-ol (lupeol, 1) and 3β-lup-20(29)-en-3-yl acetate (2) and the carbohydrate 1,2,3,4,5,6-hexa-O-acetyldulcitol (3); lupeol was also isolated from Xylosma flexuosa. The compounds’ structures were elucidated by spectroscopic and spectrometric analysis. Compound 1 acts as an energy transfer inhibitor, interacting with isolated CF1 bound to thylakoid membrane, and dulcitol hexaacetate 3 behaves as a Hill reaction inhibitor and as an uncoupler, as determined by polarography. Chlorophyll a (Chl a) fluorescence induction kinetics from the minimum yield F0 to the maximum yield FM provides information of the filling up from electrons coming from water to plastoquinone pool with reducing equivalents. In this paper we have examined the effects of compounds 1 and 3 on spinach leaf discs. Compound 1 induces the appearance of a K-band, which indicates that it inhibits the water splitting enzyme. In vivo assays measuring the fluorescence of chl a in P. ixocarpa leaves sprayed with compound 1, showed the appearance of the K-band and the PSII reaction centers was transformed to “heat sinks” or silent reaction centers unable to reduce QA. However, 3 also induced the appearance of a K band and a new band I appears in P. ixocarpa plants, therefore it inhibits at the water splitting enzyme complex and at the PQH2 site on b6f complex. Compounds 1 and 3 did not affect chlorophyll a fluorescence of L. perenne plants. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop