Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = (EDO-TTF)2PF6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1927 KiB  
Article
Optical Study of Electronic Structure and Photoinduced Dynamics in the Organic Alloy System [(EDO-TTF)0.89(MeEDO-TTF)0.11]2PF6
by Tadahiko Ishikawa, Yohei Urasawa, Taiki Shindo, Yoichi Okimoto, Shin-ya Koshihara, Seiichi Tanaka, Ken Onda, Takaaki Hiramatsu, Yoshiaki Nakano, Koichiro Tanaka and Hideki Yamochi
Appl. Sci. 2019, 9(6), 1174; https://doi.org/10.3390/app9061174 - 20 Mar 2019
Cited by 3 | Viewed by 2996
Abstract
Over the past two decades (EDO-TTF)2PF6 (EDO-TTF = 4,5-ethylenedioxytetrathiafulvalene), which exhibits a metal–insulator (M–I) phase transition with charge–ordering (CO), has been investigated energetically because of attractive characteristics that include ultrafast and massive photoinduced spectral and structural changes. In contrast, while [...] Read more.
Over the past two decades (EDO-TTF)2PF6 (EDO-TTF = 4,5-ethylenedioxytetrathiafulvalene), which exhibits a metal–insulator (M–I) phase transition with charge–ordering (CO), has been investigated energetically because of attractive characteristics that include ultrafast and massive photoinduced spectral and structural changes. In contrast, while its crystal structure has much in common with the (EDO-TTF)2PF6 crystal, the organic alloy system of [(EDO-TTF)0.89(MeEDO-TTF)0.11]2PF6 (MeEDO-TTF = 4,5-ethylenedioxy-4′-methyltetrathiafulvalene) exhibits a quite different type of M–I phase transition that is attributed to Peierls instability. Here, an optical study of the static absorption spectra and the time-resolved changes in the absorption spectra of [(EDO-TTF)0.89(MeEDO-TTF)0.11]2PF6 are reported. The observed absorption spectra related to the electronic structure are highly anisotropic. With a reduction in temperature (T), the opening of a small optical gap and a small shift in the center frequency of the C=C stretching mode are observed along with the M–I phase transition. Additionally, photoinduced transient states have been assigned based on their relaxation processes and transient intramolecular vibrational spectra. Reflecting small valence and structural changes and weak donor–anion interactions, a photoinduced transient state that is similar to the thermal-equilibrium high-T metallic phase appears more rapidly in the alloy system than that in (EDO-TTF)2PF6. Full article
(This article belongs to the Special Issue Photoinduced Cooperative Phenomena)
Show Figures

Figure 1

17 pages, 1621 KiB  
Review
Photoinduced Phase Transition in Strongly Electron-Lattice and Electron–Electron Correlated Molecular Crystals
by Tadahiko Ishikawa, Ken Onda and Shin-ya Koshihara
Crystals 2012, 2(3), 1067-1083; https://doi.org/10.3390/cryst2031067 - 27 Jul 2012
Cited by 1 | Viewed by 7895
Abstract
Strongly electron-lattice- and electron-electron-correlated molecular crystals, such as charge transfer (CT) complexes, are often sensitive to external stimuli, e.g., photoexcitation, due to the cooperative or competitive correlation of various interactions present in the crystals. These crystals are thus productive targets for studying photoinduced [...] Read more.
Strongly electron-lattice- and electron-electron-correlated molecular crystals, such as charge transfer (CT) complexes, are often sensitive to external stimuli, e.g., photoexcitation, due to the cooperative or competitive correlation of various interactions present in the crystals. These crystals are thus productive targets for studying photoinduced phase transitions (PIPTs). Recent advancements in research on the PIPT of CT complexes, especially Et2Me2Sb[Pd(dmit)2]2 and (EDO-TTF)2PF6, are reviewed in this report. The former exhibits a photoinduced insulator-to-insulator phase transition with clearly assigned spectral change. We demonstrate how to find the dynamics of PIPT using this system. The latter exhibits a photoinduced hidden state as an initial PIPT process. Wide energy ranged time-resolved spectroscopy can probe many kinds of photo-absorption processes, i.e., intra-molecular and inter-molecular electron excitations and intramolecular and electron-molecular vibrations. The photoinduced spectral changes in these photo-absorption processes reveal various aspects of the dynamics of PIPT, including electronic structural changes, lattice structural changes, and molecular deformations. The complexities of the dynamics of the latter system were revealed by our measurements. Full article
(This article belongs to the Special Issue Molecular Conductors)
Show Figures

Graphical abstract

Back to TopTop