Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mass flows
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3820 KB  
Article
Impact of Flexibility Implementation on the Control of a Solar District Heating System
by Manuel Betancourt Schwarz, Mathilde Veyron and Marc Clausse
Solar 2024, 4(1), 1-14; https://doi.org/10.3390/solar4010001 - 27 Dec 2023
Cited by 4 | Viewed by 1876
Abstract
Renewable energy sources, distributed generation, multi-energy carriers, distributed storage, and low-temperature district heating systems, among others, are demanding a change in the way thermal networks are conceived, understood, and operated. Governments around the world are moving to increase the renewable share in energy [...] Read more.
Renewable energy sources, distributed generation, multi-energy carriers, distributed storage, and low-temperature district heating systems, among others, are demanding a change in the way thermal networks are conceived, understood, and operated. Governments around the world are moving to increase the renewable share in energy distribution networks through legislation like the European Directive 2012/27 in Europe, and solar energy integration into district heating systems is arising as an interesting option to reduce operation costs and carbon footprint. This conveys an important investment that adds complexity to the management of thermal networks and often delays the return on investment due to the unpredictability of renewable energy sources, like solar radiation. To this end, this paper presents an optimisation methodology to aid in the operative control of an existing solar district heating system located in the northwest of France. The modelling of the system, which includes a large-scale solar field, a biomass boiler, a gas boiler, and thermal energy storage, was previously built in Dymola. The optimisation of this network was performed using MATLAB’s genetic algorithm (GA) and running the Dymola model as functional mock-up units, FMUs, using Simulink’s FMI Kit. The results show that the methodology presented here can reduce the current operation costs and improve the use of the daily storage of the DH system by a combination of mass flow control and the implementation of a flexibility function for the end-users. The cost-per-kWh was reduced by as much as 16% in a single day, and the share of heat supplied by the solar field on this day was increased by 5.22%. Full article
Show Figures

Figure 1

15 pages, 5573 KB  
Article
Spray Analysis and Combustion Assessment of Diesel-LPG Fuel Blends in Compression Ignition Engine
by Massimo Cardone, Renato Marialto, Roberto Ianniello, Maurizio Lazzaro and Gabriele Di Blasio
Fuels 2021, 2(1), 1-15; https://doi.org/10.3390/fuels2010001 - 31 Dec 2020
Cited by 10 | Viewed by 4917
Abstract
A major challenge for internal combustion engines (ICEs), and diesel engines, in particular, is the reduction of exhaust emissions, essentially nitrogen oxides (NOx) and particulate matter (PM). In this regard, the potential of LPG-diesel blends was evaluated in this work. The LPG and [...] Read more.
A major challenge for internal combustion engines (ICEs), and diesel engines, in particular, is the reduction of exhaust emissions, essentially nitrogen oxides (NOx) and particulate matter (PM). In this regard, the potential of LPG-diesel blends was evaluated in this work. The LPG and diesel blends were externally prepared by exploiting their perfect miscibility at high pressures. Two diesel-LPG mixtures with 20% and 35% by mass LPG concentrations were tested. In terms of spatial and temporal evolution, the spray characterization was performed for the two blends and pure diesel fuel through high-speed imaging technique. The combustion behavior, engine performance and exhaust emissions of LPG-diesel blends were evaluated through a test campaign carried out on a single-cylinder diesel engine. Diesel/LPG sprays penetrate less than pure diesel. This behavior results from a lower momentum, surface tension and viscosity, of the blend jets in comparison to diesel which guarantee greater atomization. The addition of LPG to diesel tends to proportionally increase the spray cone angle, due to the stronger turbulent flow interaction caused by, the lower density and low flash-boiling point. Because of improved atomization and mixing during the injection phase, the blends have shown great potential in reducing PM emissions, without affecting engine performance (CO2 emissions). The addition of LPG resulted in a significant smoke reduction (about 95%) with similar NOx emissions and acceptable THC and CO emissions. Furthermore, the low cetane number (CN) and high low-heating value (LHV) ensuring leaner air-fuel mixture, and improvements in terms of efficiency, particularly for a blend with a higher concentration of LPG. Full article
Show Figures

Figure 1

Back to TopTop