Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = health research priority setting
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 549 KB  
Review
Arsenic Contamination of Groundwater in Nepal—An Overview
by Jay Krishna Thakur, Rinku Kumari Thakur, AL Ramanathan, Manish Kumar and Sudhir Kumar Singh
Water 2011, 3(1), 1-20; https://doi.org/10.3390/w3010001 - 29 Dec 2010
Cited by 127 | Viewed by 32404
Abstract
In Nepal, arsenic (As) contamination is a major issue of current drinking water supply systems using groundwater and has recently been one of the major environmental health management issues especially in the plain region, i.e., in the Terai districts, where the population [...] Read more.
In Nepal, arsenic (As) contamination is a major issue of current drinking water supply systems using groundwater and has recently been one of the major environmental health management issues especially in the plain region, i.e., in the Terai districts, where the population density is very high. The Terai inhabitants still use hand tube and dug wells (with hand held pumps that are bored at shallow to medium depth) for their daily water requirements, including drinking water. The National Sanitation Steering Committee (NSSC), with the help of many other organizations, has completed arsenic blanket test in 25 districts of Nepal by analysing 737,009 groundwater samples. Several organizations, including academic institutions, made an effort to determine the levels of arsenic concentrations in groundwater and their consequences in Nepal. The results of the analyses on 25,058 samples tested in 20 districts, published in the status report of arsenic in Nepal (2003), demonstrated that the 23% of the samples were containing 10–50 µg/L of As, and the 8% of the samples were containing more than 50 µg/L of As. Recent status of over 737,009 samples tested, the 7.9% and 2.3% were contaminated by 10–50 µg/L and >50 µg/L, respectively of As. The present paper examines the various techniques available for the reduction of arsenic concentrations in Nepal in combination with the main results achieved, the socio-economic status and the strategies. This paper aims to comprehensively compile all existing data sets and analyze them scientifically, by trying to suggest a common sustainable approach for identifying the As contamination in the nation, that can be easily adopted by local communities for developing a sustainable society. The paper aims also to find probable solutions to quantify and mitigate As problem without any external support. The outcome of this paper will ultimately help to identify various ways for: identify risk areas; develop awareness; adopt the World Health Organization (WHO) guideline; identify alternative safe water sources and assess their sustainability; give priorities to water supply and simple eco-friendly treatment techniques; investigate impacts of arsenic on health and agriculture; strengthen the capability of government, public, Non-governmental Organization (NGO) and research institutions. Full article
Show Figures

Figure 1

Back to TopTop