Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Wan Marhaini Wan Omar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2563 KiB  
Review
LGCM and PLS-SEM in Panel Survey Data: A Systematic Review and Bibliometric Analysis
by Zulkifli Mohd Ghazali, Wan Fairos Wan Yaacob and Wan Marhaini Wan Omar
Data 2023, 8(2), 32; https://doi.org/10.3390/data8020032 - 30 Jan 2023
Cited by 7 | Viewed by 6576
Abstract
The application of Latent Growth Curve Model (LGCM) and Partial Least Square Structural Equation Modeling (PLS-SEM) has gained much attention in panel survey studies. This study explores the distributions and trends of LGCM, and PLS-SEM used in panel survey data. It highlights the [...] Read more.
The application of Latent Growth Curve Model (LGCM) and Partial Least Square Structural Equation Modeling (PLS-SEM) has gained much attention in panel survey studies. This study explores the distributions and trends of LGCM, and PLS-SEM used in panel survey data. It highlights the gaps in the current and existing approaches of PLS-SEM practiced by researchers in analyzing panel survey data. The integrated bibliometric analysis and systematic review were employed in this study. Based on the reviewed articles, the LGCM and PLS-SEM showed an increasing trend of publication in the panel survey data. Though the popularity of LGCM was more outstanding than PLS-SEM for the panel survey data, LGCM has several limitations such as statistical assumptions, reliable sample size, number of repeated measures, and missing data. This systematic review identified five different approaches of PLS-SEM in analyzing the panel survey data namely pre- and post-approach with different constructs, a path comparison approach, a cross-lagged approach, pre- and post-approach with the same constructs, and an evaluation approach practiced by researchers. None of the previous approaches used can establish one structural model to represent the whole changes in the repeated measure. Thus, the findings of this paper could help researchers choose a more appropriate approach to analyzing panel survey data. Full article
Show Figures

Figure 1

Back to TopTop