Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Uroosa Ejaz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1204 KiB  
Article
Detection of Genes Encoding Microbial Surface Component Recognizing Adhesive Matrix Molecules in Methicillin-Resistant Staphylococcus aureus Isolated from Pyoderma Patients
by Mohammed Alorabi, Uroosa Ejaz, Bahram Khan Khoso, Fakhur Uddin, Samy F. Mahmoud, Muhammad Sohail and Mona Youssef
Genes 2023, 14(4), 783; https://doi.org/10.3390/genes14040783 - 24 Mar 2023
Cited by 4 | Viewed by 2524
Abstract
Pyoderma is a common skin infection predominantly caused by Staphylococcus aureus. In addition to methicillin resistance, this pathogen is resistant to many other antibiotics, which ultimately limits the available treatment options. Therefore, the present study aimed to compare the antibiotic-resistance pattern, to detect [...] Read more.
Pyoderma is a common skin infection predominantly caused by Staphylococcus aureus. In addition to methicillin resistance, this pathogen is resistant to many other antibiotics, which ultimately limits the available treatment options. Therefore, the present study aimed to compare the antibiotic-resistance pattern, to detect the mecA gene and the genes encoding microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) in S. aureus isolates. A total of 116 strains were isolated from patients suffering with pyoderma. Disk diffusion assay was opted to perform antimicrobial susceptibility testing of the isolates. Out of the isolates tested, 23–42.2% strains appeared susceptible to benzylpenicillin, cefoxitin, ciprofloxacin and erythromycin. While linezolid was found to be the most effective anti-staphylococcal drug, followed by rifampin, chloramphenicol, clindamycin, gentamicin and ceftaroline. Out of 116 isolates, 73 (62.93%) were methicillin-resistant S. aureus (MRSA). Statistically significant (p ≤ 0.05) differences in antibiotic resistance patterns between MRSA and methicillin-susceptible S. aureus (MSSA) were found. A significant association of resistance to ceftaroline, rifampin, tetracycline, ciprofloxacin, clindamycin, trimethoprim–sulfamethoxazole and chloramphenicol was found in MRSA. However, no significant difference was observed between MRSA and MSSA for resistance against gentamicin, erythromycin or linezolid. All cefoxitin-resistant S. aureus, nonetheless, were positive for the mecA gene. femA was found in all the MRSA isolates. Among other virulence markers, bbp and fnbB were found in all the isolates, while can (98.3%), clfA and fnbA (99.1%) were present predominately in MRSA. Thus, this study offers an understanding of antibiotic resistance MSCRAMMs, mecA, and femA gene patterns in locally isolated strains of S. aureus. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

11 pages, 3090 KiB  
Article
Utilization of Corncob as an Immobilization Matrix for a Xylanolytic Yeast Strain
by Maham Aftab, Uroosa Ejaz, Rami Adel Pashameah, Aimen Fatima, Jaweria Syed, Immad Ansari, Muhammad Sohail, Samah A. AlSubhi, Eman Alzahrani and Zeinhom M. El-Bahy
Polymers 2023, 15(3), 683; https://doi.org/10.3390/polym15030683 - 29 Jan 2023
Cited by 3 | Viewed by 2625
Abstract
Immobilization of microbial cells for the production of industrially important enzymes has been reported to offer the advantages of recyclability, higher yields and cost effectiveness. The search for an appropriate matrix that is affordable and easy to prepare is a significant topic in [...] Read more.
Immobilization of microbial cells for the production of industrially important enzymes has been reported to offer the advantages of recyclability, higher yields and cost effectiveness. The search for an appropriate matrix that is affordable and easy to prepare is a significant topic in microbial biotechnology. Here, an abundant type of agro-industrial waste—corncob—was utilized as an immobilization matrix for the production of xylanase from an indigenous yeast strain, Saccharomyces cerevisiae MK-157. This is the first report describing xylanase production from immobilized S. cerevisiae. To render the corncob matrix more porous, alkaline pretreatment was undertaken and yeast cells were immobilized on the matrix by cultivating at 30 °C for 48 h in Sabouraud dextrose broth. After incubation, the immobilized matrix was transferred to mineral salt medium containing 1% xylan and incubated at 30 °C for 24 h. Xylanase production was determined in cell-free culture supernatant and the matrix was recycled for up to seven cycles. Moreover, xylanase-mediated saccharification was carried out using sugarcane bagasse as a substrate and the release of reducing sugars was monitored. The results showed that the immobilized yeast produced 4.97 IU mL−1 xylanase in the first production cycle, indicating a >tenfold increase compared to the free cells. Xylanase production further increased to its maximum levels (9.23 IU mL−1) in the fourth production cycle. Nonetheless, the cells retained 100% productivity for up to seven cycles. The volumetric and specific productivity of xylanase were also the highest in the fourth cycle. Scanning electron microscopy images revealed the rough surface of the untreated corncob, which became more porous after alkaline pretreatment. Immobilized yeast cells were also visible on the corncob pieces. The saccharification of a natural resource—sugarcane bagasse—using xylanase preparation yielded 26 mg L−1 of reducing sugars. Therefore, it can be concluded that yeast strains can yield sufficient quantities of xylanase, allowing possible biotechnological applications. Moreover, corncob can serve as a cost-effective matrix for industrially important yeast strains. Full article
(This article belongs to the Special Issue Renewable and Sustainable Polymers)
Show Figures

Figure 1

12 pages, 8509 KiB  
Article
Use of Ionic Liquid Pretreated and Fermented Sugarcane Bagasse as an Adsorbent for Congo Red Removal
by Uroosa Ejaz, Agha Arslan Wasim, Muhammad Nasiruddin Khan, Othman M. Alzahrani, Samy F. Mahmoud, Zeinhom M. El-Bahy and Muhammad Sohail
Polymers 2021, 13(22), 3943; https://doi.org/10.3390/polym13223943 - 15 Nov 2021
Cited by 15 | Viewed by 3116
Abstract
A large amount of industrial wastewater containing pollutants including toxic dyes needs to be processed prior to its discharge into the environment. Biological materials such as sugarcane bagasse (SB) have been reported for their role as adsorbents to remove the dyes from water. [...] Read more.
A large amount of industrial wastewater containing pollutants including toxic dyes needs to be processed prior to its discharge into the environment. Biological materials such as sugarcane bagasse (SB) have been reported for their role as adsorbents to remove the dyes from water. In this study, the residue SB after fermentation was utilized for the dye removal. A combined pretreatment of NaOH and methyltrioctylammonium chloride was given to SB for lignin removal, and the pretreated SB was utilized for cellulase production from Bacillus aestuarii UE25. The strain produced 118 IU mL−1 of endoglucanse and 70 IU mL−1 of β-glucosidase. Scanning electron microscopy and FTIR spectra showed lignin and cellulose removal in fermented SB. This residue was utilized for the adsorption of an azo dye, congo red (CR). The thermodynamic, isotherm and kinetics studies for the adsorption of CR revealed distinct adsorption features of SB. Untreated SB followed Langmuir isotherm, whereas pretreated SB and fermented SB obeyed the Freundlich isotherm model. The pseudo-second-order model fitted well for the studied adsorbents. The results of thermodynamic studies revealed spontaneous adsorption with negative standard free energy values. Untreated SB showed a 90.36% removal tendency at 303.15 K temperature, whereas the adsorbents comprised of pretreated and fermented SB removed about 98.35% and 97.70%, respectively. The study provided a strategy to utilize SB for cellulase production and its use as an adsorbent for toxic dyes removal. Full article
(This article belongs to the Collection Sustainable Polymeric Materials from Renewable Resources)
Show Figures

Graphical abstract

11 pages, 628 KiB  
Review
Cellulases: From Bioactivity to a Variety of Industrial Applications
by Uroosa Ejaz, Muhammad Sohail and Abdelaziz Ghanemi
Biomimetics 2021, 6(3), 44; https://doi.org/10.3390/biomimetics6030044 - 5 Jul 2021
Cited by 189 | Viewed by 15459
Abstract
Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin [...] Read more.
Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin have shown their potential application in various commercial sectors including textile, pulp and paper, laundry, brewing, agriculture and biofuel. Cellulases have diversified applications in the food industry, food service, food supply and its preservation. Indeed, cellulases can tenderize fruits, clarify the fruit juices, reduce roughage in dough, hydrolyze the roasted coffee, extract tea polyphenols and essential oils from olives and can increase aroma and taste in food items. However, their role in food industries has by and large remained neglected. The use of immobilized cellulases has further expanded their application in fruit and vegetable processing as it potentiates the catalytic power and reduces the cost of process. Technological and scientific developments will further expand their potential usage in the food industry. Full article
Show Figures

Figure 1

Back to TopTop