Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Subrato Bharati ORCID = 0000-0001-8849-4313

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1140 KiB  
Review
Deep Learning and Federated Learning for Screening COVID-19: A Review
by M. Rubaiyat Hossain Mondal, Subrato Bharati, Prajoy Podder and Joarder Kamruzzaman
BioMedInformatics 2023, 3(3), 691-713; https://doi.org/10.3390/biomedinformatics3030045 - 1 Sep 2023
Cited by 8 | Viewed by 2562
Abstract
Since December 2019, a novel coronavirus disease (COVID-19) has infected millions of individuals. This paper conducts a thorough study of the use of deep learning (DL) and federated learning (FL) approaches to COVID-19 screening. To begin, an evaluation of research articles published between [...] Read more.
Since December 2019, a novel coronavirus disease (COVID-19) has infected millions of individuals. This paper conducts a thorough study of the use of deep learning (DL) and federated learning (FL) approaches to COVID-19 screening. To begin, an evaluation of research articles published between 1 January 2020 and 28 June 2023 is presented, considering the preferred reporting items of systematic reviews and meta-analysis (PRISMA) guidelines. The review compares various datasets on medical imaging, including X-ray, computed tomography (CT) scans, and ultrasound images, in terms of the number of images, COVID-19 samples, and classes in the datasets. Following that, a description of existing DL algorithms applied to various datasets is offered. Additionally, a summary of recent work on FL for COVID-19 screening is provided. Efforts to improve the quality of FL models are comprehensively reviewed and objectively evaluated. Full article
Show Figures

Figure 1

19 pages, 3763 KiB  
Article
Rethinking Densely Connected Convolutional Networks for Diagnosing Infectious Diseases
by Prajoy Podder, Fatema Binte Alam, M. Rubaiyat Hossain Mondal, Md Junayed Hasan, Ali Rohan and Subrato Bharati
Computers 2023, 12(5), 95; https://doi.org/10.3390/computers12050095 - 2 May 2023
Cited by 17 | Viewed by 4596
Abstract
Due to its high transmissibility, the COVID-19 pandemic has placed an unprecedented burden on healthcare systems worldwide. X-ray imaging of the chest has emerged as a valuable and cost-effective tool for detecting and diagnosing COVID-19 patients. In this study, we developed a deep [...] Read more.
Due to its high transmissibility, the COVID-19 pandemic has placed an unprecedented burden on healthcare systems worldwide. X-ray imaging of the chest has emerged as a valuable and cost-effective tool for detecting and diagnosing COVID-19 patients. In this study, we developed a deep learning model using transfer learning with optimized DenseNet-169 and DenseNet-201 models for three-class classification, utilizing the Nadam optimizer. We modified the traditional DenseNet architecture and tuned the hyperparameters to improve the model’s performance. The model was evaluated on a novel dataset of 3312 X-ray images from publicly available datasets, using metrics such as accuracy, recall, precision, F1-score, and the area under the receiver operating characteristics curve. Our results showed impressive detection rate accuracy and recall for COVID-19 patients, with 95.98% and 96% achieved using DenseNet-169 and 96.18% and 99% using DenseNet-201. Unique layer configurations and the Nadam optimization algorithm enabled our deep learning model to achieve high rates of accuracy not only for detecting COVID-19 patients but also for identifying normal and pneumonia-affected patients. The model’s ability to detect lung problems early on, as well as its low false-positive and false-negative rates, suggest that it has the potential to serve as a reliable diagnostic tool for a variety of lung diseases. Full article
(This article belongs to the Special Issue Machine and Deep Learning in the Health Domain)
Show Figures

Figure 1

26 pages, 4452 KiB  
Article
LDDNet: A Deep Learning Framework for the Diagnosis of Infectious Lung Diseases
by Prajoy Podder, Sanchita Rani Das, M. Rubaiyat Hossain Mondal, Subrato Bharati, Azra Maliha, Md Junayed Hasan and Farzin Piltan
Sensors 2023, 23(1), 480; https://doi.org/10.3390/s23010480 - 2 Jan 2023
Cited by 38 | Viewed by 4843
Abstract
This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The proposed LDDNet was developed using [...] Read more.
This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The proposed LDDNet was developed using additional layers of 2D global average pooling, dense and dropout layers, and batch normalization to the base DenseNet201 model. There are 1024 Relu-activated dense layers and 256 dense layers using the sigmoid activation method. The hyper-parameters of the model, including the learning rate, batch size, epochs, and dropout rate, were tuned for the model. Next, three datasets of lung diseases were formed from separate open-access sources. One was a CT scan dataset containing 1043 images. Two X-ray datasets comprising images of COVID-19-affected lungs, pneumonia-affected lungs, and healthy lungs exist, with one being an imbalanced dataset with 5935 images and the other being a balanced dataset with 5002 images. The performance of each model was analyzed using the Adam, Nadam, and SGD optimizers. The best results have been obtained for both the CT scan and CXR datasets using the Nadam optimizer. For the CT scan images, LDDNet showed a COVID-19-positive classification accuracy of 99.36%, a 100% precision recall of 98%, and an F1 score of 99%. For the X-ray dataset of 5935 images, LDDNet provides a 99.55% accuracy, 73% recall, 100% precision, and 85% F1 score using the Nadam optimizer in detecting COVID-19-affected patients. For the balanced X-ray dataset, LDDNet provides a 97.07% classification accuracy. For a given set of parameters, the performance results of LDDNet are better than the existing algorithms of ResNet152V2 and XceptionNet. Full article
(This article belongs to the Special Issue Biomedical Signal and Image Processing with Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop