Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Shouhei Maeno

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 421 KiB  
Article
Influence of Halogen Substituents on the Catalytic Oxidation of 2,4,6-Halogenated Phenols by Fe(III)-Tetrakis(p-hydroxyphenyl) porphyrins and Potassium Monopersulfate
by Masami Fukushima, Yusuke Mizutani, Shouhei Maeno, Qianqian Zhu, Hideki Kuramitz and Seiya Nagao
Molecules 2012, 17(1), 48-60; https://doi.org/10.3390/molecules17010048 - 22 Dec 2011
Cited by 19 | Viewed by 7888
Abstract
The influence of halogen substituents on the catalytic oxidation of 2,4,6-trihalogenated phenols (TrXPs) by iron(III)-porphyrin/KHSO5 catalytic systems was investigated. Iron(III)-5,10,15,20-tetrakis(p-hydroxyphenyl)porphyrin (FeTHP) and its supported variants were employed, where the supported catalysts were synthesized by introducing FeTHP into hydroquinone-derived humic acids [...] Read more.
The influence of halogen substituents on the catalytic oxidation of 2,4,6-trihalogenated phenols (TrXPs) by iron(III)-porphyrin/KHSO5 catalytic systems was investigated. Iron(III)-5,10,15,20-tetrakis(p-hydroxyphenyl)porphyrin (FeTHP) and its supported variants were employed, where the supported catalysts were synthesized by introducing FeTHP into hydroquinone-derived humic acids via formaldehyde poly-condensation. F (TrFP), Cl (TrCP), Br (TrBP) and I (TrIP) were examined as halogen substituents for TrXPs. Although the supported catalysts significantly enhanced the degradation and dehalogenation of TrFP and TrCP, the oxidation of TrBP and TrIP was not enhanced, compared to the FeTHP catalytic system. These results indicate that the degree of oxidation of TrXPs is strongly dependent on the types of halogen substituent. The order of dehalogenation levels for halogen substituents in TrXPs was F > Cl > Br > I, consistent with their order of electronegativity. The electronegativity of a halogen substituent affects the nucleophilicity of the carbon to which it is attached. The levels of oxidation products in the reaction mixtures were analyzed by GC/MS after extraction with n-hexane. The most abundant dimer product from TrFP via 2,6-difluoroquinone is consistent with a scenario where TrXP, with a more electronegative halogen substituent, is readily oxidized, while less electronegative halogen substituents are oxidized less readily by iron(III)-porphyrin/KHSO5 catalytic systems. Full article
(This article belongs to the Special Issue Tetrapyrroles, Porphyrins and Phthalocyanines)
Show Figures

Graphical abstract

Back to TopTop