Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Saad Niaz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1032 KiB  
Review
Exploiting Endocytosis for Non-Spherical Nanoparticle Cellular Uptake
by Saad Niaz, Ben Forbes and Bahijja Tolulope Raimi-Abraham
Nanomanufacturing 2022, 2(1), 1-16; https://doi.org/10.3390/nanomanufacturing2010001 - 1 Feb 2022
Cited by 25 | Viewed by 7918
Abstract
Several challenges exist for successful nanoparticle cellular uptake—they must be able to cross many physical barriers to reach their target and overcome the cell membrane. A strategy to overcome this challenge is to exploit natural uptake mechanisms namely passive and endocytic (i.e., clathrin- [...] Read more.
Several challenges exist for successful nanoparticle cellular uptake—they must be able to cross many physical barriers to reach their target and overcome the cell membrane. A strategy to overcome this challenge is to exploit natural uptake mechanisms namely passive and endocytic (i.e., clathrin- and caveolin-dependent/-independent endocytosis, macropinocytosis and phagocytosis). The influence of nanoparticle material and size is well documented and understood compared to the influence of nanomaterial shape. Generally, nanoparticle shape is referred to as being either spherical or non-spherical and is known to be an important factor in many processes. Nanoparticle shape-dependent effects in areas such as immune response, cancer drug delivery, theranostics and overall implications for nanomedicines are of great interest. Studies have looked at the cellular uptake of spherical NPs, however, fewer in comparison have investigated the cellular uptake of non-spherical NPs. This review explores the exploitation of endocytic pathways for mainly inorganic non-spherical (shapes of focus include rod, triangular, star-shaped and nanospiked) nanoparticles cellular uptake. The role of mathematical modelling as predictive tools for non-spherical nanoparticle cellular uptake is also reviewed. Both quantitative structure-activity relationship (QSAR) and continuum membrane modelling have been used to gain greater insight into the cellular uptake of complex non-spherical NPs at a greater depth difficult to achieve using experimental methods. Full article
(This article belongs to the Special Issue Current Review in Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

11 pages, 1510 KiB  
Article
Insulinotropic Potential of Moxifloxacin and Gemifloxacin: An In Vivo Rabbits Model Study Followed by Randomized Phase I Clinical Trial
by Abid Ullah, Shujaat Ahmad, Niaz Ali, Shafiq Ur Rahman, Haya Hussain, Saad Alghamdi, Mazen Almehmadi, Anas S. Dablool, Azzah M. Bannunah, Syeda Hajira Bukhari and Feras Almarshad
Antibiotics 2022, 11(2), 148; https://doi.org/10.3390/antibiotics11020148 - 24 Jan 2022
Cited by 4 | Viewed by 3069
Abstract
Fluoroquinolones (FQs) have been reported to cause dysglycemia in both diabetic and non-diabetic patients. However, diabetic patients are usually on polypharmacy, so we cannot attribute the dysglycemia specifically to FQs. To answer the question as to whether Moxifloxacin and Gemifloxacin influence blood glucose [...] Read more.
Fluoroquinolones (FQs) have been reported to cause dysglycemia in both diabetic and non-diabetic patients. However, diabetic patients are usually on polypharmacy, so we cannot attribute the dysglycemia specifically to FQs. To answer the question as to whether Moxifloxacin and Gemifloxacin influence blood glucose levels and serum insulin levels or otherwise, rabbits were used as experimental animals in an in vivo model followed by a phase I randomized clinical trial in euglycemic healthy volunteers. The effects on the serum insulin and blood glucose levels in the Moxifloxacin and Gemifloxacin treated groups were, respectively, determined on the fifth day in both the in-vivo rabbits model and in the test subjects of the phase I clinical trial. The effects of these drugs were also checked on the histomorphology of the pancreas in the rabbits. The findings of our study suggest that Moxifloxacin and Gemifloxacin significantly (p < 0.05) reduced the blood glucose levels via a subsequent significant shift in the serum insulin levels both in the in vivo animal model and in the test subjects of the phase I clinical trial. No prominent effects on the beta cells histomorphology were noted in this study. Moxifloxacin showed a more significant effect than Gemifloxacin. The insulinotropic effect was comparable to the effect of Glibenclamide. It is concluded that Moxifloxacin and Gemifloxacin have a significant blood glucose lowering effect mediated through insulinotropic action. (Clinical Trials.gov identifier: NCT04692623). Full article
Show Figures

Figure 1

Back to TopTop