Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Pedro Santana Sales Lauria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 561 KiB  
Review
Probiotics as Antioxidant Strategy for Managing Diabetes Mellitus and Its Complications
by Max Denisson Maurício Viana, Sthefane Silva Santos, Anna Beatriz Oliveira Cruz, Maria Vitória Abreu Cardoso de Jesus, Pedro Santana Sales Lauria, Marvin Paulo Lins and Cristiane Flora Villarreal
Antioxidants 2025, 14(7), 767; https://doi.org/10.3390/antiox14070767 - 22 Jun 2025
Viewed by 715
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by impaired glycemic regulation and persistent hyperglycemia, which drives the onset of microvascular complications such as diabetic neuropathy and nephropathy. Chronic hyperglycemia activates oxidative stress pathways and alters gut microbiota composition, both of which [...] Read more.
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by impaired glycemic regulation and persistent hyperglycemia, which drives the onset of microvascular complications such as diabetic neuropathy and nephropathy. Chronic hyperglycemia activates oxidative stress pathways and alters gut microbiota composition, both of which contribute to disease progression. In this context, probiotics have emerged as promising therapeutic agents due to their ability to modulate oxidative stress, improve glycemic control, and influence gut microbial balance. This review summarizes preclinical and clinical evidence supporting the antioxidant potential of probiotics in DM management, with a focus on underlying mechanisms. Strains from the Lactobacillus and Bifidobacterium genera are the most extensively studied and have demonstrated hypoglycemic and antioxidant effects, including the enhancement of key antioxidant enzymes and reductions in lipid peroxidation and nitrosative stress markers. Probiotics have also shown beneficial effects in DM-associated complications, particularly diabetic neuropathy and nephropathy. While clinical data are still limited, recent findings underscore oxidative stress as a critical therapeutic target influenced by probiotic interventions. Overall, current evidence supports probiotics as a complementary strategy for managing DM and its complications, highlighting the need for further well-designed clinical trials exploring diverse strains, formulations, and dosing regimens. Full article
Show Figures

Figure 1

19 pages, 2078 KiB  
Review
Alpha-Lipoic Acid as an Antioxidant Strategy for Managing Neuropathic Pain
by Max Denisson Maurício Viana, Pedro Santana Sales Lauria, Alyne Almeida de Lima, Luiza Carolina França Opretzka, Henrique Rodrigues Marcelino and Cristiane Flora Villarreal
Antioxidants 2022, 11(12), 2420; https://doi.org/10.3390/antiox11122420 - 8 Dec 2022
Cited by 27 | Viewed by 12169
Abstract
Neuropathic pain (NP) is the most prevalent and debilitating form of chronic pain, caused by injuries or diseases of the somatosensory system. Since current first-line treatments only provide poor symptomatic relief, the search for new therapeutic strategies for managing NP is an active [...] Read more.
Neuropathic pain (NP) is the most prevalent and debilitating form of chronic pain, caused by injuries or diseases of the somatosensory system. Since current first-line treatments only provide poor symptomatic relief, the search for new therapeutic strategies for managing NP is an active field of investigation. Multiple mechanisms contribute to the genesis and maintenance of NP, including damage caused by oxidative stress. The naturally occurring antioxidant alpha-lipoic acid (ALA) is a promising therapeutic agent for the management of NP. Several pre-clinical in vitro and in vivo studies as well as clinical trials demonstrate the analgesic potential of ALA in the management of NP. The beneficial biological activities of ALA are reflected in the various patents for the development of ALA-based innovative products. This review demonstrates the therapeutic potential of ALA in the management of NP by discussing its analgesic effects by multiple antioxidant mechanisms as well as the use of patented ALA-based products and how technological approaches have been applied to enhance ALA’s pharmacological properties. Full article
(This article belongs to the Special Issue Pharmacological Characterization of Natural Antioxidants)
Show Figures

Figure 1

17 pages, 2157 KiB  
Article
Unveiling Targets for Treating Postoperative Pain: The Role of the TNF-α/p38 MAPK/NF-κB/Nav1.8 and Nav1.9 Pathways in the Mouse Model of Incisional Pain
by Flávia Oliveira de Lima, Pedro Santana Sales Lauria, Renan Fernandes do Espírito-Santo, Afrânio Ferreira Evangelista, Tâmara Magalhães Oliveira Nogueira, Dionéia Araldi, Milena Botelho Pereira Soares and Cristiane Flora Villarreal
Int. J. Mol. Sci. 2022, 23(19), 11630; https://doi.org/10.3390/ijms231911630 - 1 Oct 2022
Cited by 17 | Viewed by 2958
Abstract
Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice [...] Read more.
Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice and the signaling pathway modulating these channels. A surgical incision was made in the plantar hind paw of male Swiss mice. Nociceptive thresholds were assessed by von Frey filaments. Gene expression of Nav1.8, Nav1.9, TNF-α, and COX-2 was evaluated by Real-Time PCR in dorsal root ganglia (DRG). Knockdown mice for Nav1.8 and Nav1.9 were produced by antisense oligodeoxynucleotides intrathecal treatments. Local levels of TNF-α and PGE2 were immunoenzymatically determined. Incised mice exhibited hypernociception and upregulated expression of Nav1.8 and Nav1.9 in DRG. Antisense oligodeoxynucleotides reduced hypernociception and downregulated Nav1.8 and Nav1.9. TNF-α and COX-2/PGE2 were upregulated in DRG and plantar skin. Inhibition of TNF-α and COX-2 reduced hypernociception, but only TNF-α inhibition downregulated Nav1.8 and Nav1.9. Antagonizing NF-κB and p38 mitogen-activated protein kinase (MAPK), but not ERK or JNK, reduced both hypernociception and hyperexpression of Nav1.8 and Nav1.9. This study proposes the contribution of the TNF-α/p38/NF-κB/Nav1.8 and Nav1.9 pathways to the pathophysiology of the mouse model of incisional pain. Full article
(This article belongs to the Special Issue New Advance on Molecular Targets for the Treatment of Pain)
Show Figures

Figure 1

Back to TopTop