Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Olive M. McCabe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 291 KiB  
Article
Intracerebroventricular Administration of Amyloid β-protein Oligomers Selectively Increases Dorsal Hippocampal Dialysate Glutamate Levels in the Awake Rat
by Sean D. O’Shea, Imelda M. Smith, Olive M. McCabe, Michelle M. Cronin, Dominic M. Walsh and William T. O’Connor
Sensors 2008, 8(11), 7428-7437; https://doi.org/10.3390/s8117428 - 19 Nov 2008
Cited by 22 | Viewed by 15359
Abstract
Extensive evidence supports an important role for soluble oligomers of the amyloid β-protein (Aβ) in Alzheimer’s Disease pathogenesis. In the present study we combined intracerebroventricular (icv) injections with brain microdialysis technology in the fully conscious rat to assess [...] Read more.
Extensive evidence supports an important role for soluble oligomers of the amyloid β-protein (Aβ) in Alzheimer’s Disease pathogenesis. In the present study we combined intracerebroventricular (icv) injections with brain microdialysis technology in the fully conscious rat to assess the effects of icv administered SDS-stable low-n Aβ oligomers (principally dimers and trimers) on excitatory and inhibitory amino acid transmission in the ipsilateral dorsal hippocampus. Microdialysis was employed to assess the effect of icv administration of Aβ monomers and Aβ oligomers on dialysate glutamate, aspartate and GABA levels in the dorsal hippocampus. Administration of Aβ oligomers was associated with a +183% increase (p<0.0001 vs. Aβ monomer-injected control) in dorsal hippocampal glutamate levels which was still increasing at the end of the experiment (260 min), whereas aspartate and GABA levels were unaffected throughout. These findings demonstrate that icv administration and microdialysis technology can be successfully combined in the awake rat and suggests that altered dorsal hippocampal glutamate transmission may be a useful target for pharmacological intervention in Alzheimer’s Disease. Full article
(This article belongs to the Special Issue Amperometric Sensors and Techniques for Neurochemical Monitoring)
Show Figures

Back to TopTop