Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Mohammed Goryawala

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1744 KiB  
Article
A Novel Approach to Determining Tumor Progression Using a Three-Site Pilot Clinical Trial of Spectroscopic MRI-Guided Radiation Dose Escalation in Glioblastoma
by Karthik K. Ramesh, Vicki Huang, Jeffrey Rosenthal, Eric A. Mellon, Mohammed Goryawala, Peter B. Barker, Saumya S. Gurbani, Anuradha G. Trivedi, Alexander S. Giuffrida, Eduard Schreibmann, Hui Han, Macarena de le Fuente, Erin M. Dunbar, Matthias Holdhoff, Lawrence R. Kleinberg, Hui-Kuo G. Shu, Hyunsuk Shim and Brent D. Weinberg
Tomography 2023, 9(1), 362-374; https://doi.org/10.3390/tomography9010029 - 6 Feb 2023
Cited by 2 | Viewed by 3764
Abstract
Glioblastoma (GBM) is a fatal disease, with poor prognosis exacerbated by difficulty in assessing tumor extent with imaging. Spectroscopic MRI (sMRI) is a non-contrast imaging technique measuring endogenous metabolite levels of the brain that can serve as biomarkers for tumor extension. We completed [...] Read more.
Glioblastoma (GBM) is a fatal disease, with poor prognosis exacerbated by difficulty in assessing tumor extent with imaging. Spectroscopic MRI (sMRI) is a non-contrast imaging technique measuring endogenous metabolite levels of the brain that can serve as biomarkers for tumor extension. We completed a three-site study to assess survival benefits of GBM patients when treated with escalated radiation dose guided by metabolic abnormalities in sMRI. Escalated radiation led to complex post-treatment imaging, requiring unique approaches to discern tumor progression from radiation-related treatment effect through our quantitative imaging platform. The purpose of this study is to determine true tumor recurrence timepoints for patients in our dose-escalation multisite study using novel methodology and to report on median progression-free survival (PFS). Follow-up imaging for all 30 trial patients were collected, lesion volumes segmented and graphed, and imaging uploaded to our platform for visual interpretation. Eighteen months post-enrollment, the median PFS was 16.6 months with a median time to follow-up of 20.3 months. With this new treatment paradigm, incidence rate of tumor recurrence one year from treatment is 30% compared to 60–70% failure under standard care. Based on the delayed tumor progression and improved survival, a randomized phase II trial is under development (EAF211). Full article
(This article belongs to the Special Issue Current Trends in Diagnostic and Therapeutic Imaging of Brain Tumors)
Show Figures

Figure 1

8 pages, 6712 KiB  
Article
The Longitudinal Imaging Tracker (BrICS-LIT):A Cloud Platform for Monitoring Treatment Response in Glioblastoma Patients
by Karthik Ramesh, Saumya S. Gurbani, Eric A. Mellon, Vicki Huang, Mohammed Goryawala, Peter B. Barker, Lawrence Kleinberg, Hui-Kuo G. Shu, Hyunsuk Shim and Brent D. Weinberg
Tomography 2020, 6(2), 93-100; https://doi.org/10.18383/j.tom.2020.00001 - 1 Jun 2020
Cited by 9 | Viewed by 1439
Abstract
Glioblastoma is a common and aggressive form of brain cancer affecting up to 20,000 new patients in the US annually. Despite rigorous therapies, current median survival is only 15–20 months. Patients who complete initial treatment undergo follow-up imaging at routine intervals to assess [...] Read more.
Glioblastoma is a common and aggressive form of brain cancer affecting up to 20,000 new patients in the US annually. Despite rigorous therapies, current median survival is only 15–20 months. Patients who complete initial treatment undergo follow-up imaging at routine intervals to assess for tumor recurrence. Imaging is a central part of brain tumor management, but MRI findings in patients with brain tumor can be challenging to interpret and are further confounded by interpretation variability. Disease-specific structured reporting attempts to reduce variability in imaging results by implementing well-defined imaging criteria and standardized language. The Brain Tumor Reporting and Data System (BT-RADS) is one such framework streamlined for clinical workflows and includes quantitative criteria for more objective evaluation of follow-up imaging. To facilitate accurate and objective monitoring of patients during the follow-up period, we developed a cloud platform, the Brain Imaging Collaborative Suite's Longitudinal Imaging Tracker (BrICS-LIT). BrICS-LIT uses semiautomated tumor segmentation algorithms of both T2-weighted FLAIR and contrast-enhanced T1-weighted MRI to assist clinicians in quantitative assessment of brain tumors. The LIT platform can ultimately guide clinical decision-making for patients with glioblastoma by providing quantitative metrics for BT-RADS scoring. Further, this platform has the potential to increase objectivity when measuring efficacy of novel therapies for patients with brain tumor during their follow-up. Therefore, LIT will be used to track patients in a dose-escalated clinical trial, where spectroscopic MRI has been used to guide radiation therapy (Clinicaltrials.gov NCT03137888), and compare patients to a control group that received standard of care. Full article
8 pages, 1919 KiB  
Article
The Brain Imaging Collaboration Suite (BrICS): A Cloud Platform for Integrating Whole-Brain Spectroscopic MRI into the Radiation Therapy Planning Workflow
by Saumya Gurbani, Brent Weinberg, Lee Cooper, Eric Mellon, Eduard Schreibmann, Sulaiman Sheriff, Andrew Maudsley, Mohammed Goryawala, Hui-Kuo Shu and Hyunsuk Shim
Tomography 2019, 5(1), 184-191; https://doi.org/10.18383/j.tom.2018.00028 - 1 Mar 2019
Cited by 39 | Viewed by 2063
Abstract
Glioblastoma has poor prognosis with inevitable local recurrence despite aggressive treatment with surgery and chemoradiation. Radiation therapy (RT) is typically guided by contrast-enhanced T1-weighted magnetic resonance imaging (MRI) for defining the high-dose target and T2-weighted fluid-attenuation inversion recovery MRI for defining the moderate-dose [...] Read more.
Glioblastoma has poor prognosis with inevitable local recurrence despite aggressive treatment with surgery and chemoradiation. Radiation therapy (RT) is typically guided by contrast-enhanced T1-weighted magnetic resonance imaging (MRI) for defining the high-dose target and T2-weighted fluid-attenuation inversion recovery MRI for defining the moderate-dose target. There is an urgent need for improved imaging methods to better delineate tumors for focal RT. Spectroscopic MRI (sMRI) is a quantitative imaging technique that enables whole-brain analysis of endogenous metabolite levels, such as the ratio of choline-to-N-acetylaspartate. Previous work has shown that choline-to-N-acetylaspartate ratio accurately identifies tissue with high tumor burden beyond what is seen on standard imaging and can predict regions of metabolic abnormality that are at high risk for recurrence. To facilitate efficient clinical implementation of sMRI for RT planning, we developed the Brain Imaging Collaboration Suite (BrICS; https://brainimaging.emory.edu/brics-demo), a cloud platform that integrates sMRI with standard imaging and enables team members from multiple departments and institutions to work together in delineating RT targets. BrICS is being used in a multisite pilot study to assess feasibility and safety of dose-escalated RT based on metabolic abnormalities in patients with glioblastoma (Clinicaltrials.gov NCT03137888). The workflow of analyzing sMRI volumes and preparing RT plans is described. The pipeline achieved rapid turnaround time by enabling team members to perform their delegated tasks independently in BrICS when their clinical schedules allowed. To date, 18 patients have been treated using targets created in BrICS and no severe toxicities have been observed. Full article
Back to TopTop