Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = M. A. Mohaseb

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 907 KiB  
Article
MATLAB Simulation-Based Theoretical Study for Detection of a Wide Range of Pathogens Using 1D Defective Photonic Structure
by Arafa H. Aly, S. K. Awasthi, M. A. Mohaseb, Z. S. Matar and A. F. Amin
Crystals 2022, 12(2), 220; https://doi.org/10.3390/cryst12020220 - 2 Feb 2022
Cited by 42 | Viewed by 4039
Abstract
The present 1D photonic biosensor is composed of two sub-PhCs of alternate layers made of GaP and SiO2. The period number of each PhC has been fixed to 3. Both these PhCs are joined together through a cavity region of air [...] Read more.
The present 1D photonic biosensor is composed of two sub-PhCs of alternate layers made of GaP and SiO2. The period number of each PhC has been fixed to 3. Both these PhCs are joined together through a cavity region of air in which different analytes are to be filled one by one under the scope of this study. The theoretical findings of this work have been formulated with the help of the well-known transfer matrix method. Moreover, all the computations pertaining to this work have been carried out with the help of MATLAB software. The effect of change in cavity thickness and angle of incidence corresponding to a TE wave on the transmittance of the structure (AB)ND(AB)N has been studied theoretically which in turn determines the performance of the proposed biosensor. Various parameters, such as sensitivity (S), signal to noise ratio (SNR), figure of merit (FOM), resolution (RS), detection limit (LOD), quality factor (Q) and dynamic range (DR) have been theoretically calculated to evaluate the performance of the proposed design in true sense. The sensitivity of this structure varies between the highest and lowest values of 337.3626 nm/RIU and 333.0882 nm/RIU corresponding to water samples containing Pseudomonas aeruginosa cells and Bacillus anthracia cells, respectively, under normal incidence condition with a cavity thickness of 2.0 µm. The resolution (in nm) and LOD (in RIU) values of the proposed design are small enough and are significant for our structure. This study may also be helpful for distinguishing various microbiological samples under investigation and find suitable applications for discriminating bacterial cells from spores. Full article
(This article belongs to the Special Issue Recent Advances in Photonic Crystal and Optical Devices)
Show Figures

Figure 1

15 pages, 3004 KiB  
Article
Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design
by Arafa H. Aly, S. K. Awasthi, A. M. Mohamed, Z. S. Matar, M. A. Mohaseb, M. Al-Dossari, M. T. Tammam, Zaky A. Zaky, A. F. Amin and Walied Sabra
Crystals 2021, 11(12), 1533; https://doi.org/10.3390/cryst11121533 - 9 Dec 2021
Cited by 48 | Viewed by 4945
Abstract
In this manuscript, we have explored the photonic biosensing application of the 1D photonic crystal (PhC) (AB)NCDC(AB)N, which is capable of detecting reproductive progesterone and estradiol hormones of different concentration levels in blood samples [...] Read more.
In this manuscript, we have explored the photonic biosensing application of the 1D photonic crystal (PhC) (AB)NCDC(AB)N, which is capable of detecting reproductive progesterone and estradiol hormones of different concentration levels in blood samples of females. The proposed structure is composed of an air cavity surrounded by two buffer layers of material MgF2, which is sandwiched between two identical 1D sub PhCs (AB)N. Both sub PhCs are made up of alternate layers of materials, SiO2 and Si, of period 5. MATLAB software has been used to obtain transmission characteristics of the structure corresponding TE wave, only with the help of the transfer matrix method. The mainstay of this research is focused on the dependence of the intensity and position of the defect mode inside the photonic bandgap with respect to reproductive hormone concentrations in blood samples, change in the thickness of the cavity region and change in angle of incidence corresponding to TE wave only. The proposed design shows high sensitivity of 98.92 nm/nmol/L and 96.58 nm/nmol/L when the cavity of a thickness of 340 nm is loaded with progesterone and estradiol hormones of concentrations of 80 nmol/L and 11 nmol/L, respectively, at an incident angle of 20°. Apart from sensitivity, other parameters such as quality factor and figure of merit have also been computed to gain deep insight about the sensing capabilities of the proposed design. These findings may pave the path for the design and development of various sensing devices capable of detecting gynecological problems pertaining to reproductive hormones in females. Thus, the simple design and excellent performance makes our design most efficient and suitable for sensing applications in industrial and biomedical fields. Full article
Show Figures

Figure 1

Back to TopTop