Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Lo’ai Tawalbeh

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 774 KiB  
Article
Models versus Datasets: Reducing Bias through Building a Comprehensive IDS Benchmark
by Rasheed Ahmad, Izzat Alsmadi, Wasim Alhamdani and Lo’ai Tawalbeh
Future Internet 2021, 13(12), 318; https://doi.org/10.3390/fi13120318 - 17 Dec 2021
Cited by 5 | Viewed by 3398
Abstract
Today, deep learning approaches are widely used to build Intrusion Detection Systems for securing IoT environments. However, the models’ hidden and complex nature raises various concerns, such as trusting the model output and understanding why the model made certain decisions. Researchers generally publish [...] Read more.
Today, deep learning approaches are widely used to build Intrusion Detection Systems for securing IoT environments. However, the models’ hidden and complex nature raises various concerns, such as trusting the model output and understanding why the model made certain decisions. Researchers generally publish their proposed model’s settings and performance results based on a specific dataset and a classification model but do not report the proposed model’s output and findings. Similarly, many researchers suggest an IDS solution by focusing only on a single benchmark dataset and classifier. Such solutions are prone to generating inaccurate and biased results. This paper overcomes these limitations in previous work by analyzing various benchmark datasets and various individual and hybrid deep learning classifiers towards finding the best IDS solution for IoT that is efficient, lightweight, and comprehensive in detecting network anomalies. We also showed the model’s localized predictions and analyzed the top contributing features impacting the global performance of deep learning models. This paper aims to extract the aggregate knowledge from various datasets and classifiers and analyze the commonalities to avoid any possible bias in results and increase the trust and transparency of deep learning models. We believe this paper’s findings will help future researchers build a comprehensive IDS based on well-performing classifiers and utilize the aggregated knowledge and the minimum set of significantly contributing features. Full article
(This article belongs to the Special Issue Machine Learning Integration with Cyber Security)
Show Figures

Graphical abstract

17 pages, 3964 KiB  
Article
IoT Privacy and Security: Challenges and Solutions
by Lo’ai Tawalbeh, Fadi Muheidat, Mais Tawalbeh and Muhannad Quwaider
Appl. Sci. 2020, 10(12), 4102; https://doi.org/10.3390/app10124102 - 15 Jun 2020
Cited by 601 | Viewed by 102536
Abstract
Privacy and security are among the significant challenges of the Internet of Things (IoT). Improper device updates, lack of efficient and robust security protocols, user unawareness, and famous active device monitoring are among the challenges that IoT is facing. In this work, we [...] Read more.
Privacy and security are among the significant challenges of the Internet of Things (IoT). Improper device updates, lack of efficient and robust security protocols, user unawareness, and famous active device monitoring are among the challenges that IoT is facing. In this work, we are exploring the background of IoT systems and security measures, and identifying (a) different security and privacy issues, (b) approaches used to secure the components of IoT-based environments and systems, (c) existing security solutions, and (d) the best privacy models necessary and suitable for different layers of IoT driven applications. In this work, we proposed a new IoT layered model: generic and stretched with the privacy and security components and layers identification. The proposed cloud/edge supported IoT system is implemented and evaluated. The lower layer represented by the IoT nodes generated from the Amazon Web Service (AWS) as Virtual Machines. The middle layer (edge) implemented as a Raspberry Pi 4 hardware kit with support of the Greengrass Edge Environment in AWS. We used the cloud-enabled IoT environment in AWS to implement the top layer (the cloud). The security protocols and critical management sessions were between each of these layers to ensure the privacy of the users’ information. We implemented security certificates to allow data transfer between the layers of the proposed cloud/edge enabled IoT model. Not only is the proposed system model eliminating possible security vulnerabilities, but it also can be used along with the best security techniques to countermeasure the cybersecurity threats facing each one of the layers; cloud, edge, and IoT. Full article
(This article belongs to the Special Issue Fog Computing for Intelligent IoT Applications)
Show Figures

Figure 1

Back to TopTop