Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Layla B. Sabirova

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9358 KiB  
Article
Determination of Residual Stresses in 3D-Printed Polymer Parts
by Madina Issametova, Nikita V. Martyushev, Abilkaiyr Zhastalap, Layla B. Sabirova, Uderbayeva Assemgul, Arailym Tursynbayeva and Gazel Abilezova
Polymers 2024, 16(14), 2067; https://doi.org/10.3390/polym16142067 - 19 Jul 2024
Cited by 4 | Viewed by 2558
Abstract
This paper presents the results of an investigation of the possibility of the reliable determination of the residual stress–strain state in polymers and composites using a combination of bridge curvature, optical scanning, and finite element methods. A three-factor experiment was conducted to determine [...] Read more.
This paper presents the results of an investigation of the possibility of the reliable determination of the residual stress–strain state in polymers and composites using a combination of bridge curvature, optical scanning, and finite element methods. A three-factor experiment was conducted to determine the strength of printed PLA plastic products. The effect of the residual stresses on the strength of the printed products was evaluated. By comparing the values of the same strength stresses, a relationship between the nature of the stresses and the strength of the samples was found. A tendency of the negative influence of tensile stresses and the opposite strengthening effect of compressive stresses was obvious, so at the same values of tensile strength, the value of residual stress of 42.9 MPa is lower than that of the fibre compression at the value of 88.9 MPa. The proposed new methods of the residual stress determination allow obtaining a complete picture of the stressed state of the material in the investigated areas of the products. This may be necessary in confirming the calculated models of the residual stress–strain state, clarifying the strength criteria and assessing the quality of the selected technological modes of manufacturing the products. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

24 pages, 5905 KiB  
Article
Modeling and Model Verification of the Stress-Strain State of Reinforced Polymer Concrete
by Kassym Yelemessov, Layla B. Sabirova, Nikita V. Martyushev, Boris V. Malozyomov, Gulnara B. Bakhmagambetova and Olga V. Atanova
Materials 2023, 16(9), 3494; https://doi.org/10.3390/ma16093494 - 1 May 2023
Cited by 29 | Viewed by 2995
Abstract
This article considers the prospects of the application of building structures made of polymer concrete composites on the basis of strength analysis. The issues of application and structure of polymer-concrete mixtures are considered. Features of the stress-strain state of normal sections of polymer [...] Read more.
This article considers the prospects of the application of building structures made of polymer concrete composites on the basis of strength analysis. The issues of application and structure of polymer-concrete mixtures are considered. Features of the stress-strain state of normal sections of polymer concrete beams are revealed. The dependence between the stresses and relative deformations of rubber polymer concretes and beams containing reinforcement frame and fiber reinforcement has been determined. The main direction of the study was the choice of ways to increase the strength characteristics of concrete with the addition of a polymer base and to increase the reliability of structures in general. The paper presents the results of experimental and mathematical studies of the stress-strain state and strength, as well as deflections of reinforced rubber-polymer beams. The peculiarities of fracture of reinforced rubber-polymer beams along their sections have been revealed according to the results of the experiment. The peculiarities of fracture formation of reinforced rubber-polymer beams have also been revealed. The conducted work has shown that the share of longitudinal reinforcement and the height of the fibrous reinforcement zone are the main factors. These reasons determine the characteristics of the strength of the beams and their resistance to destructive influences. The importance and scientific novelty of the work are the identified features of the stress-strain state of normal sections of rubber-concrete beams, namely, it has been established that the ultimate strength in axial compression and tension, deformations corresponding to the ultimate strength for rubber concrete exceed similar parameters for cement concrete 2.5–6.5 times. In the case of the addition of fiber reinforcement, this increase becomes, respectively, 3.0–7.5 times. Full article
Show Figures

Figure 1

Back to TopTop