Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Kunihisa Kohno

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1912 KiB  
Review
Beta-Blockers and Oxidative Stress in Patients with Heart Failure
by Kazufumi Nakamura, Masato Murakami, Daiji Miura, Kei Yunoki, Kenki Enko, Masamichi Tanaka, Yukihiro Saito, Nobuhiro Nishii, Toru Miyoshi, Masashi Yoshida, Hiroki Oe, Norihisa Toh, Satoshi Nagase, Kunihisa Kohno, Hiroshi Morita, Hiromi Matsubara, Kengo F Kusano, Tohru Ohe and Hiroshi Ito
Pharmaceuticals 2011, 4(8), 1088-1100; https://doi.org/10.3390/ph4081088 - 5 Aug 2011
Cited by 59 | Viewed by 13807
Abstract
Oxidative stress has been implicated in the pathogenesis of heart failure. Reactive oxygen species (ROS) are produced in the failing myocardium, and ROS cause hypertrophy, apoptosis/cell death and intracellular Ca2+ overload in cardiac myocytes. ROS also cause damage to lipid cell membranes [...] Read more.
Oxidative stress has been implicated in the pathogenesis of heart failure. Reactive oxygen species (ROS) are produced in the failing myocardium, and ROS cause hypertrophy, apoptosis/cell death and intracellular Ca2+ overload in cardiac myocytes. ROS also cause damage to lipid cell membranes in the process of lipid peroxidation. In this process, several aldehydes, including 4-hydroxy-2-nonenal (HNE), are generated and the amount of HNE is increased in the human failing myocardium. HNE exacerbates the formation of ROS, especially H2O2 and ·OH, in cardiomyocytes and subsequently ROS cause intracellular Ca2+ overload. Treatment with beta-blockers such as metoprolol, carvedilol and bisoprolol reduces the levels of oxidative stress, together with amelioration of heart failure. This reduction could be caused by several possible mechanisms. First, the beta-blocking effect is important, because catecholamines such as isoproterenol and norepinephrine induce oxidative stress in the myocardium. Second, anti-ischemic effects and negative chronotropic effects are also important. Furthermore, direct antioxidative effects of carvedilol contribute to the reduction of oxidative stress. Carvedilol inhibited HNE-induced intracellular Ca2+ overload. Beta-blocker therapy is a useful antioxidative therapy in patients with heart failure. Full article
(This article belongs to the Special Issue Betablockers)
Show Figures

10 pages, 143 KiB  
Article
Use of Intravenous Amiodarone in the Treatment of Nifekalant-Resistant Arrhythmia: A Review of 11 Consecutive Cases with Severe Heart Failure
by Koji Nakagawa, Kazufumi Nakamura, Kengo Fukushima Kusano, Satoshi Nagase, Takeshi Tada, Masato Murakami, Yoshiki Hata, Hiroshi Morita, Kunihisa Kohno, Kazumasa Hina, Tohru Ujihira, Tohru Ohe and Hiroshi Ito
Pharmaceuticals 2011, 4(6), 794-803; https://doi.org/10.3390/ph4060794 - 31 May 2011
Cited by 2 | Viewed by 7259
Abstract
Background: Both nifekalant hydrochloride (NIF), a selective IKr blocker, and intravenous amiodarone (AMD), a multi-channel (including IKr blocking) blocker, have been reported to be efficacious for refractory arrhythmias. However, the optimal use of those antiarrhythmic drugs for refractory arrhythmia with [...] Read more.
Background: Both nifekalant hydrochloride (NIF), a selective IKr blocker, and intravenous amiodarone (AMD), a multi-channel (including IKr blocking) blocker, have been reported to be efficacious for refractory arrhythmias. However, the optimal use of those antiarrhythmic drugs for refractory arrhythmia with severe heart failure has not been established. Intravenous AMD might be effective for arrhythmias refractory to NIF in patients with severe heart failure. Here, we report that intravenous amiodarone was effective in the treatment of nifekalant-resistant in a group of arrhythmia patients with severe heart failure. Methods: Eleven severe heart failure patients who had received intravenous AMD for treatment of NIF-resistant arrhythmias were included in this study, and retrospective analysis was performed. Clinical efficacy (terminative and preventive effects on arrhythmia) of intravenous AMD was evaluated. Results: All cases were emergent cases and had depressed left ventricular ejection fraction (30 ± 13%). Clinical arrhythmias were ventricular fibrillation (VF) in four patients, ventricular tachycardia (VT) in six patients, and atrial fibrillation (AF) in one patient. NIF was administered to all patients by intravenous injection. After administration of NIF, VT/VF/AF was terminated in seven of the 10 patients, but a preventive effect was not obtained in any of the patients (NIF-resistance). Intravenous AMD (maintenance dose: 484 ± 166 mg/day) was effective both in termination (80%) and in prevention (80%) of VT/VF events in those patients. It was also effective in termination (80%) and prevention (60%) of AF events refractory to NIF. During continuous AMD administration, no significant adverse effects or proarrhythmic effects were observed in any of the patients. Five patients died within one month, but there was no arrhythmic deaths. Conclusions: Intravenous AMD was effective in NIF-resistant lethal arrhythmias and was relatively safe in emergent cases with severe heart failure. Full article
Show Figures

Back to TopTop