Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Kangle Jia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3098 KiB  
Review
Recent Advances of Organ-on-a-Chip in Cancer Modeling Research
by Xingxing Liu, Qiuping Su, Xiaoyu Zhang, Wenjian Yang, Junhua Ning, Kangle Jia, Jinlan Xin, Huanling Li, Longfei Yu, Yuheng Liao and Diming Zhang
Biosensors 2022, 12(11), 1045; https://doi.org/10.3390/bios12111045 - 18 Nov 2022
Cited by 40 | Viewed by 10589
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer [...] Read more.
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients’ cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing)
Show Figures

Figure 1

Back to TopTop