Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Jean-Baptiste Clais

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 21106 KiB  
Article
Non-Invasive On-Site pXRF Analysis of Coloring Agents, Marks and Enamels of Qing Imperial and Non-Imperial Porcelain
by Philippe Colomban, Gulsu Simsek Franci, Jacques Burlot, Xavier Gallet, Bing Zhao and Jean-Baptiste Clais
Ceramics 2023, 6(1), 447-474; https://doi.org/10.3390/ceramics6010026 - 3 Feb 2023
Cited by 14 | Viewed by 5184
Abstract
On-site pXRF analysis in various French collections (Musée du Louvre, Musée national des Arts asiatiques-Guimet, Paris) of porcelains decorated with painted enamels from the Qing Dynasty, in particular porcelains bearing an imperial mark, identifies the types of enamels/glazes, the ions and coloring phases [...] Read more.
On-site pXRF analysis in various French collections (Musée du Louvre, Musée national des Arts asiatiques-Guimet, Paris) of porcelains decorated with painted enamels from the Qing Dynasty, in particular porcelains bearing an imperial mark, identifies the types of enamels/glazes, the ions and coloring phases or the opacifier. The study of the elements associated with cobalt (nickel, manganese, arsenic, etc.) and of the impurities of the silicate matrix (yttrium, rubidium and strontium) differentiates the use of ‘Chinese/Asian’ raw materials from ones imported from Europe by the initiative of the European missionaries (chiefly Jesuits) present at the Court (Beijing). Particular attention is paid to the analysis of the blue color of the marks and to the elements associated with the use of gold or copper nanoparticles as well as to the compositions of the pyrochlore phases (tin yellow, Naples yellow). The comparison is extended to pXRF and Raman microspectroscopy measurements previously made on other Qing imperial porcelains as well as on Cantonese productions (on porcelain or metal) from different Swiss and French museums and blue-and-white wares of the Ming and Yuan Dynasties (archaeological and private collections). Full article
Show Figures

Figure 1

26 pages, 15897 KiB  
Article
Investigation of the Pigments and Glassy Matrix of Painted Enamelled Qing Dynasty Chinese Porcelains by Noninvasive On-Site Raman Microspectrometry
by Philippe Colomban, Burcu Kırmızı, Bing Zhao, Jean-Baptiste Clais, Yong Yang and Vincent Droguet
Heritage 2020, 3(3), 915-940; https://doi.org/10.3390/heritage3030050 - 17 Aug 2020
Cited by 20 | Viewed by 5188
Abstract
A selection of 15 Chinese painted enameled porcelains from the 18th century (Qing dynasty) was analyzed on-site by mobile Raman and XRF microspectroscopy. The highly prized artifacts are present in the collections of the Musée du Louvre in Paris and Musée Chinois at [...] Read more.
A selection of 15 Chinese painted enameled porcelains from the 18th century (Qing dynasty) was analyzed on-site by mobile Raman and XRF microspectroscopy. The highly prized artifacts are present in the collections of the Musée du Louvre in Paris and Musée Chinois at Fontainebleau Castle in France. In the painted enamels, pigments such as Naples yellow lead pyrochlore, hematite, manganese oxide and carbon and opacifiers such as lead arsenates were detected. The glassy matrices of the enamels mainly belonged to lead-rich and lead-alkali glass types according to the Raman spectra obtained. The glaze and body phases of the porcelain artifacts were also analyzed. The detection of lead arsenate apatite in some of the blue enamels was significant, indicating the use of arsenic-rich European cobalt ores (smalt) and possibly mixing with Asian cobalt. This characteristic phase has also been identified in French soft-paste porcelains and glass decor and high-quality Limoges enamels from the same period. Based on the shape of the Raman scattering background, the presence of colloidal gold (Au° nanoparticles) was identified in red, orange and pink enamels. Different types of Naples yellow pigments were also detected with Sb-rich, Sn-rich and mixed Sb–Sn–(Zn, Fe?) compositions in the yellow enamels. The results were compared to previous data obtained on Chinese cloisonné and painted enameled metalware and Limoges enamels as well as French enameled watches. Full article
(This article belongs to the Special Issue Optical Technologies Applied to Cultural Heritage)
Show Figures

Graphical abstract

32 pages, 11573 KiB  
Article
Non-Invasive On-Site Raman Study of Pigments and Glassy Matrix of 17th–18th Century Painted Enamelled Chinese Metal Wares: Comparison with French Enamelling Technology
by Philippe Colomban, Burcu Kırmızı, Bing Zhao, Jean-Baptiste Clais, Yong Yang and Vincent Droguet
Coatings 2020, 10(5), 471; https://doi.org/10.3390/coatings10050471 - 12 May 2020
Cited by 31 | Viewed by 6505
Abstract
A selection of 10 Chinese enamelled metal wares dating from the 17th–18th centuries (Qing Dynasty) was analysed on-site by mobile Raman microspectroscopy. These wares display cloisonné and/or painted enamels and belong to the collections of Musée du Louvre in Paris and Musée Chinois [...] Read more.
A selection of 10 Chinese enamelled metal wares dating from the 17th–18th centuries (Qing Dynasty) was analysed on-site by mobile Raman microspectroscopy. These wares display cloisonné and/or painted enamels and belong to the collections of Musée du Louvre in Paris and Musée Chinois at the Fontainebleau Castle in France. Pigments (Naples yellow lead pyrochlore, hematite, manganese oxide etc.), opacifiers (fluorite, lead arsenates) and corresponding lead-based glassy matrices were identified. One artefact was also analysed by portable X-ray fluorescence spectrometry (pXRF) in order to confirm the Raman data. In some of these metal wares, it is suggested that cassiterite was unpredictably used as an opacifier in some parts of the decor. The results are compared to previous data obtained on Chinese cloisonné and Limoges enamels as well as recent data recorded on painted enamelled porcelains of the Qing Dynasty. Lead arsenate apatite detected in some of the 17th–18th century blue enamelled decors is related to the use of arsenic-rich European cobalt ores, as also characterized in French soft-paste porcelain and glass decors and high-quality Limoges enamels for the same period. However, lead arsenate could then also have been deliberately used for white opacification. The specific Raman signature displaying the shape of the Raman scattering background indicates the presence of colloidal gold (Au° nanoparticles) in red to violet enamelled and cloisonné areas. At least three types of Naples yellow lead pyrochlore pigments identified with Sb-rich, Sn-rich and mixed Sb–Sn–(Zn, Fe?) compositions prove the use of European pigments/recipes. Full article
(This article belongs to the Special Issue Surface and Interface Analysis of Cultural Heritage)
Show Figures

Graphical abstract

Back to TopTop