Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Irina A. Bundeleva ORCID = 0000-0002-8888-4781

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6773 KiB  
Article
Carbonate Precipitation in Mixed Cyanobacterial Biofilms Forming Freshwater Microbial Tufa
by Dahédrey Payandi-Rolland, Adeline Roche, Emmanuelle Vennin, Pieter T. Visscher, Philippe Amiotte-Suchet, Camille Thomas and Irina A. Bundeleva
Minerals 2019, 9(7), 409; https://doi.org/10.3390/min9070409 - 3 Jul 2019
Cited by 16 | Viewed by 7343
Abstract
Mixed cyanobacteria-dominated biofilms, enriched from a tributary of the Mérantaise (France) were used to conduct laboratory experiments in order to understand the relationship between the morphology of carbonate precipitates and the biological activity (e.g., cyanobacterial exopolymeric substances (EPS) production, photosynthetic pH increases). DNA [...] Read more.
Mixed cyanobacteria-dominated biofilms, enriched from a tributary of the Mérantaise (France) were used to conduct laboratory experiments in order to understand the relationship between the morphology of carbonate precipitates and the biological activity (e.g., cyanobacterial exopolymeric substances (EPS) production, photosynthetic pH increases). DNA sequencing data showed that the enriched biofilm was composed predominantly of two types of filamentous cyanobacteria that belonged to the Oscillatoriaceae and Phormidiaceae families, respectively. Microscopic analysis also indicated the presence of some coccoid cyanobacteria resembling Gloeocapsa. Analysis of carbonate precipitates in experimental biofilms showed three main morphologies: micro-peloids with different shapes of mesocrystals associated with Oscillatoriaceae filaments and theirs EPS, lamellae of carbonate formed directly on Phormidiaceae filaments, and rhombic sparite crystals wrapped in EPS. All crystals were identified by FT-IR spectroscopy as calcite. Similar structures as those that formed in laboratory conditions were observed in the microbial-tufa deposits collected in the stream. Microscopic and spectroscopic analysis of laboratory and natural samples indicated a close proximity of the cyanobacterial EPS and precipitated carbonates in both. Based on the laboratory experiments, we conclude that the microbial tufa in the stream is in an early stage of formation. Full article
(This article belongs to the Special Issue Microbialites: Preservation of Extant and Extinct Systems)
Show Figures

Figure 1

Back to TopTop