Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Inga K. Koopmann ORCID = 0000-0002-4108-0399

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 37100 KiB  
Article
Screening of a Thraustochytrid Strain Collection for Carotenoid and Squalene Production Characterized by Cluster Analysis, Comparison of 18S rRNA Gene Sequences, Growth Behavior, and Morphology
by Inga K. Koopmann, Bettina A. Müller and Antje Labes
Mar. Drugs 2023, 21(4), 204; https://doi.org/10.3390/md21040204 - 24 Mar 2023
Cited by 7 | Viewed by 5899
Abstract
Carotenoids and squalene are important terpenes that are applied in a wide range of products in foods and cosmetics. Thraustochytrids might be used as alternative production organisms to improve production processes, but the taxon is rarely studied. A screening of 62 strains of [...] Read more.
Carotenoids and squalene are important terpenes that are applied in a wide range of products in foods and cosmetics. Thraustochytrids might be used as alternative production organisms to improve production processes, but the taxon is rarely studied. A screening of 62 strains of thraustochytrids sensu lato for their potential to produce carotenoids and squalene was performed. A phylogenetic tree was built based on 18S rRNA gene sequences for taxonomic classification, revealing eight different clades of thraustochytrids. Design of experiments (DoE) and growth models identified high amounts of glucose (up to 60 g/L) and yeast extract (up to 15 g/L) as important factors for most of the strains. Squalene and carotenoid production was studied by UHPLC-PDA-MS measurements. Cluster analysis of the carotenoid composition partially mirrored the phylogenetic results, indicating a possible use for chemotaxonomy. Strains in five clades produced carotenoids. Squalene was found in all analyzed strains. Carotenoid and squalene synthesis was dependent on the strain, medium composition and solidity. Strains related to Thraustochytrium aureum and Thraustochytriidae sp. are promising candidates for carotenoid synthesis. Strains closely related to Schizochytrium aggregatum might be suitable for squalene production. Thraustochytrium striatum might be a good compromise for the production of both molecule groups. Full article
(This article belongs to the Special Issue Marine Metabolomics 2023)
Show Figures

Figure 1

26 pages, 1318 KiB  
Article
Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus pluvialis
by Inga K. Koopmann, Simone Möller, Clemens Elle, Stefan Hindersin, Annemarie Kramer and Antje Labes
Foods 2022, 11(9), 1352; https://doi.org/10.3390/foods11091352 - 6 May 2022
Cited by 9 | Viewed by 5778
Abstract
Astaxanthin derived from Haematococcus pluvialis is a valuable metabolite applied in a wide range of products. Its extraction depends on a sophisticated series of downstream process steps, including harvesting, disruption, drying, and extraction, of which some are dependent on each other. To determine [...] Read more.
Astaxanthin derived from Haematococcus pluvialis is a valuable metabolite applied in a wide range of products. Its extraction depends on a sophisticated series of downstream process steps, including harvesting, disruption, drying, and extraction, of which some are dependent on each other. To determine the processes that yield maximum astaxanthin recovery, bead milling, high-pressure homogenization, and no disruption of H. pluvialis biomass were coupled with spray-drying, vacuum-drying, and freeze-drying in all possible combinations. Eventually, astaxanthin was extracted using supercritical CO2. Optimal conditions for spray-drying were evaluated through the design of experiments and standard least squares regression (feed rate: 5.8 mL/min, spray gas flow: 400 NL/h, inlet temperature: 180 °C). Maximal astaxanthin recoveries were yielded using high-pressure homogenization and lyophilization (85.4%). All combinations of milling or high-pressure homogenization and lyophilization or spray-drying resulted in similar recoveries. Bead milling and spray-drying repeated with a larger spray-dryer resulted in similar astaxanthin recoveries compared with the laboratory scale. Smaller astaxanthin recoveries after the extraction of vacuum-dried biomass were mainly attributed to textural changes. Evaluation of these results in an economic context led to a recommendation for bead milling and spray-drying prior to supercritical CO2 extraction to achieve the maximum astaxanthin recoveries. Full article
Show Figures

Figure 1

Back to TopTop