Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Dominic O'Connor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4291 KiB  
Article
CFD Simulation and Optimisation of a Low Energy Ventilation and Cooling System
by John Kaiser Calautit, Dominic O'Connor, Polytimi Sofotasiou and Ben Richard Hughes
Computation 2015, 3(2), 128-149; https://doi.org/10.3390/computation3020128 - 2 Apr 2015
Cited by 36 | Viewed by 17359
Abstract
Mechanical Heating Ventilation and Air-Conditioning (HVAC) systems account for 60% of the total energy consumption of buildings. As a sector, buildings contributes about 40% of the total global energy demand. By using passive technology coupled with natural ventilation from wind towers, significant amounts [...] Read more.
Mechanical Heating Ventilation and Air-Conditioning (HVAC) systems account for 60% of the total energy consumption of buildings. As a sector, buildings contributes about 40% of the total global energy demand. By using passive technology coupled with natural ventilation from wind towers, significant amounts of energy can be saved, reducing the emissions of greenhouse gases. In this study, the development of Computational Fluid Dynamics (CFD) analysis in aiding the development of wind towers was explored. Initial concepts of simple wind tower mechanics to detailed design of wind towers which integrate modifications specifically to improve the efficiency of wind towers were detailed. From this, using CFD analysis, heat transfer devices were integrated into a wind tower to provide cooling for incoming air, thus negating the reliance on mechanical HVAC systems. A commercial CFD code Fluent was used in this study to simulate the airflow inside the wind tower model with the heat transfer devices. Scaled wind tunnel testing was used to validate the computational model. The airflow supply velocity was measured and compared with the numerical results and good correlation was observed. Additionally, the spacing between the heat transfer devices was varied to optimise the performance. The technology presented here is subject to a patent application (PCT/GB2014/052263). Full article
(This article belongs to the Special Issue Computational Fluid Dynamics in Civil Engineering)
Show Figures

Graphical abstract

Back to TopTop