Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = David H. Krinsley

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7211 KiB  
Article
Nanoscale Observations Support the Importance of Chemical Processes in Rock Decay and Rock Coating Development in Cold Climates
by Ronald I. Dorn and David H. Krinsley
Geosciences 2019, 9(3), 121; https://doi.org/10.3390/geosciences9030121 - 9 Mar 2019
Cited by 13 | Viewed by 4246
Abstract
Conventional scholarship long held that rock fracturing from physical processes dominates over chemical rock decay processes in cold climates. The paradigm of the supremacy of cold-climate shattering was questioned by Rapp’s discovery (1960) that the flux of dissolved solids leaving a Kärkevagge, Swedish [...] Read more.
Conventional scholarship long held that rock fracturing from physical processes dominates over chemical rock decay processes in cold climates. The paradigm of the supremacy of cold-climate shattering was questioned by Rapp’s discovery (1960) that the flux of dissolved solids leaving a Kärkevagge, Swedish Lapland, watershed exceeded physical denudation processes. Many others since have gone on to document the importance of chemical rock decay in all cold climate landscapes, using a wide variety of analytical approaches. This burgeoning scholarship, however, has only generated a few nanoscale studies. Thus, this paper’s purpose rests in an exploration of the potential for nanoscale research to better understand chemical processes operating on rock surfaces in cold climates. Samples from several Antarctica locations, Greenland, the Tibetan Plateau, and high altitude tropical and mid-latitude mountains all illustrate ubiquitous evidence of chemical decay at the nanoscale, even though the surficial appearance of each landscape is dominated by “bare fresh rock.” With the growing abundance of focused ion beam (FIB) instruments facilitating sample preparation, the hope is that that future rock decay researchers studying cold climates will add nanoscale microscopy to their bag of tools. Full article
Show Figures

Figure 1

Back to TopTop