Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = David Endesfelder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 978 KiB  
Review
The Potential of Omics in Biological Dosimetry
by Daniela Hladik, Martin Bucher, David Endesfelder and Ursula Oestreicher
Radiation 2022, 2(1), 78-90; https://doi.org/10.3390/radiation2010006 - 17 Jan 2022
Cited by 11 | Viewed by 4415
Abstract
Biological dosimetry is an internationally recognized method for quantifying and estimating radiation dose following suspected or verified excessive exposure to ionising radiation. In severe radiation accidents where a large number of people are potentially affected, it is possible to distinguish irradiated from non-irradiated [...] Read more.
Biological dosimetry is an internationally recognized method for quantifying and estimating radiation dose following suspected or verified excessive exposure to ionising radiation. In severe radiation accidents where a large number of people are potentially affected, it is possible to distinguish irradiated from non-irradiated people in order to initiate appropriate medical care if necessary. In addition to severe incidents caused by technical failure, environmental disasters, military actions, or criminal abuse, there are also radiation accidents in which only one or a few individuals are affected in the frame of occupational or medical exposure. The requirements for biological dosimetry are fundamentally different for these two scenarios. In particular, for large-scale radiation accidents, pre-screening methods are necessary to increase the throughput of samples for a rough first-dose categorization. The rapid development and increasing use of omics methods in research as well as in individual applications provides new opportunities for biological dosimetry. In addition to the discovery and search for new biomarkers, dosimetry assays based on omics technologies are becoming increasingly interesting and hold great potential, especially for large-scale dosimetry. In the following review, the different areas of biological dosimetry, the problems in finding suitable biomarkers, the current status of biomarker research based on omics, the potential applications of assays using omics technologies, and also the limitations for the different areas of biological dosimetry are discussed. Full article
(This article belongs to the Special Issue Omics in Radiation Research)
Show Figures

Figure 1

13 pages, 4211 KiB  
Article
Combining Primed Photoconversion and UV-Photoactivation for Aberration-Free, Live-Cell Compliant Multi-Color Single-Molecule Localization Microscopy Imaging
by David Virant, Bartosz Turkowyd, Alexander Balinovic and Ulrike Endesfelder
Int. J. Mol. Sci. 2017, 18(7), 1524; https://doi.org/10.3390/ijms18071524 - 14 Jul 2017
Cited by 18 | Viewed by 10177
Abstract
Super-resolution fluorescence microscopy plays a major role in revealing the organization and dynamics of living cells. Nevertheless, single-molecule localization microscopy imaging of multiple targets is still limited by the availability of suitable fluorophore combinations. Here, we introduce a novel imaging strategy which combines [...] Read more.
Super-resolution fluorescence microscopy plays a major role in revealing the organization and dynamics of living cells. Nevertheless, single-molecule localization microscopy imaging of multiple targets is still limited by the availability of suitable fluorophore combinations. Here, we introduce a novel imaging strategy which combines primed photoconversion (PC) and UV-photoactivation for imaging different molecular species tagged by suitable fluorescent protein combinations. In this approach, the fluorescent proteins can be specifically photoactivated/-converted by different light wavelengths using PC and UV-activation modes but emit fluorescence in the same spectral emission channel. We demonstrate that this aberration-free, live-cell compatible imaging method can be applied to various targets in bacteria, yeast and mammalian cells and can be advantageously combined with correlative imaging schemes. Full article
(This article belongs to the Special Issue Fluorescent Proteins)
Show Figures

Graphical abstract

Back to TopTop