Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Andrei Yamaev

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4546 KiB  
Article
Reprojection-Based Numerical Measure of Robustness for CT Reconstruction Neural Network Algorithms
by Aleksandr Smolin, Andrei Yamaev, Anastasia Ingacheva, Tatyana Shevtsova, Dmitriy Polevoy, Marina Chukalina, Dmitry Nikolaev and Vladimir Arlazarov
Mathematics 2022, 10(22), 4210; https://doi.org/10.3390/math10224210 - 11 Nov 2022
Cited by 4 | Viewed by 2550
Abstract
In computed tomography, state-of-the-art reconstruction is based on neural network (NN) algorithms. However, NN reconstruction algorithms can be not robust to small noise-like perturbations in the input signal. A not robust NN algorithm can produce inaccurate reconstruction with plausible artifacts that cannot be [...] Read more.
In computed tomography, state-of-the-art reconstruction is based on neural network (NN) algorithms. However, NN reconstruction algorithms can be not robust to small noise-like perturbations in the input signal. A not robust NN algorithm can produce inaccurate reconstruction with plausible artifacts that cannot be detected. Hence, the robustness of NN algorithms should be investigated and evaluated. There have been several attempts to construct the numerical metrics of the NN reconstruction algorithms’ robustness. However, these metrics estimate only the probability of the easily distinguishable artifacts occurring in the reconstruction. However, these methods measure only the probability of appearance of easily distinguishable artifacts on the reconstruction, which cannot lead to misdiagnosis in clinical applications. In this work, we propose a new method for numerical estimation of the robustness of the NN reconstruction algorithms. This method is based on the probability evaluation for NN to form such selected additional structures during reconstruction which may lead to an incorrect diagnosis. The method outputs a numerical score value from 0 to 1 that can be used when benchmarking the robustness of different reconstruction algorithms. We employed the proposed method to perform a comparative study of seven reconstruction algorithms, including five NN-based and two classical. The ResUNet network had the best robustness score (0.65) among the investigated NN algorithms, but its robustness score is still lower than that of the classical algorithm SIRT (0.989). The investigated NN models demonstrated a wide range of robustness scores (0.38–0.65). Thus, in this work, robustness of 7 reconstruction algorithms was measured using the new proposed score and it was shown that some of the neural algorithms are not robust. Full article
Show Figures

Figure 1

15 pages, 8307 KiB  
Article
Deep Learning-Based Segmentation of Post-Mortem Human’s Olfactory Bulb Structures in X-ray Phase-Contrast Tomography
by Alexandr Meshkov, Anvar Khafizov, Alexey Buzmakov, Inna Bukreeva, Olga Junemann, Michela Fratini, Alessia Cedola, Marina Chukalina, Andrei Yamaev, Giuseppe Gigli, Fabian Wilde, Elena Longo, Victor Asadchikov, Sergey Saveliev and Dmitry Nikolaev
Tomography 2022, 8(4), 1854-1868; https://doi.org/10.3390/tomography8040156 - 22 Jul 2022
Cited by 1 | Viewed by 4039
Abstract
The human olfactory bulb (OB) has a laminar structure. The segregation of cell populations in the OB image poses a significant challenge because of indistinct boundaries of the layers. Standard 3D visualization tools usually have a low resolution and cannot provide the high [...] Read more.
The human olfactory bulb (OB) has a laminar structure. The segregation of cell populations in the OB image poses a significant challenge because of indistinct boundaries of the layers. Standard 3D visualization tools usually have a low resolution and cannot provide the high accuracy required for morphometric analysis. X-ray phase contrast tomography (XPCT) offers sufficient resolution and contrast to identify single cells in large volumes of the brain. The numerous microanatomical structures detectable in XPCT image of the OB, however, greatly complicate the manual delineation of OB neuronal cell layers. To address the challenging problem of fully automated segmentation of XPCT images of human OB morphological layers, we propose a new pipeline for tomographic data processing. Convolutional neural networks (CNN) were used to segment XPCT image of native unstained human OB. Virtual segmentation of the whole OB and an accurate delineation of each layer in a healthy non-demented OB is mandatory as the first step for assessing OB morphological changes in smell impairment research. In this framework, we proposed an effective tool that could help to shed light on OB layer-specific degeneration in patients with olfactory disorder. Full article
Show Figures

Figure 1

Back to TopTop