Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Abeer Abdullah Alaql

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3743 KiB  
Article
Data-Driven Deep Journalism to Discover Age Dynamics in Multi-Generational Labour Markets from LinkedIn Media
by Abeer Abdullah Alaql, Fahad AlQurashi and Rashid Mehmood
Journal. Media 2023, 4(1), 120-145; https://doi.org/10.3390/journalmedia4010010 - 22 Jan 2023
Cited by 6 | Viewed by 6079
Abstract
We live in the information age and, ironically, meeting the core function of journalism—i.e., to provide people with access to unbiased information—has never been more difficult. This paper explores deep journalism, our data-driven Artificial Intelligence (AI) based journalism approach to study how the [...] Read more.
We live in the information age and, ironically, meeting the core function of journalism—i.e., to provide people with access to unbiased information—has never been more difficult. This paper explores deep journalism, our data-driven Artificial Intelligence (AI) based journalism approach to study how the LinkedIn media could be useful for journalism. Specifically, we apply our deep journalism approach to LinkedIn to automatically extract and analyse big data to provide the public with information about labour markets; people’s skills and education; and businesses and industries from multi-generational perspectives. The Great Resignation and Quiet Quitting phenomena coupled with rapidly changing generational attitudes are bringing unprecedented and uncertain changes to labour markets and our economies and societies, and hence the need for journalistic investigations into these topics is highly significant. We combine big data and machine learning to create a whole machine learning pipeline and a software tool for journalism that allows discovering parameters for age dynamics in labour markets using LinkedIn data. We collect a total of 57,000 posts from LinkedIn and use it to discover 15 parameters by Latent Dirichlet Allocation algorithm (LDA) and group them into 5 macro-parameters, namely Generations-Specific Issues, Skills and Qualifications, Employment Sectors, Consumer Industries, and Employment Issues. The journalism approach used in this paper can automatically discover and make objective, cross-sectional, and multi-perspective information available to all. It can bring rigour to journalism by making it easy to generate information using machine learning, and can make tools and information available so that anyone can uncover information about matters of public importance. This work is novel since no earlier work has reported such an approach and tool and leveraged it to use LinkedIn media for journalism and to discover multigenerational perspectives (parameters) for age dynamics in labour markets. The approach could be extended with additional AI tools and other media. Full article
Show Figures

Figure 1

Back to TopTop