Metabolomic Profiling of Oral Potentially Malignant Disorders and Its Clinical Values
Abstract
:1. Introduction
2. Oral Potentially Malignant Disorders (OPMD)
3. Metabolomic Profiling in OPMD
3.1. Metabolomic Techniques Used for OPMD
3.2. Biological Samples Used for OPMD Metabolomic
3.2.1. Salivary Metabolomics
3.2.2. Serum and Plasma Metabolomics
3.2.3. Cell and Tissue Metabolomics
3.2.4. Urinary Metabolomics
4. Metabolites Associated with OPMD
4.1. Oral Leukoplakia (OLK)
4.2. Oral Lichen Planus (OLP)
4.3. Oral Submucous Fibrosis (OSF)
OPMD | Sample Type | Analytical Platform | Metabolites | Pathway | References |
---|---|---|---|---|---|
OLK | Saliva | UPLC-QTOF-MS | GABA, phenylalanine, valine, n-eicosanoic acid, lactate, alanine, isoleucine, leucine, n-Tetreadecanoic acid, proline, threonine, n-Dodecanoic acid, 3-Indolepropionic acid, n-Ecicosanoic acid, Homocysteine, 4, Methoxyhenylacetic acid | Glycolysis, amino acid, fatty acid | (Wei et al., 2011) [43] |
OLK, OLP | Saliva | HPLC/MS | Not disclosed | Not disclosed | (Yan et al., 2008) [44] |
OLK | Saliva | QTOF-MS | 1-methylhistidine, inositol 1,3,4-triphosphate, d-glycerate-2-phosphate, 4-nitroquinoline-1-oxide, 2-oxoarginine, norcocaine nitroxide, sphinganine-1-phosphate, pseudouridine, L-homocysteic acid ubiquinone, neraminic acid, estradiol valerate | Sphingolipid, amino acid, carbohydrate, oxidative stress, estrogen, nucleotide biosynthesis, electron transport chain | (Srindharan et al., 2018) [61] |
OLK | Saliva | CE-MS | Guanine, carnitine, N-acetylputrescine, 7-metylguanine | Arginine decarboxylase pahway, fatty acid | (Kitabatake K et al., 2023) [45] |
OLK | Saliva | GC-MS | Decanedioic acid, 2-methyloctacosane, eicosane, octane, 3,5-dimethyl, pentadecane, hentriacontane, 5, 5-diethylpentadecane, nonadecane, oxalic acid, 6-phenylundecanea, l-proline, 2-furancarboxamide, 2-isopropyl-5-methyl-1-heptanol, pentanoic acid, Docosane. | (Tantray S et al., 2022) [15] | |
OLK | Serum | 1H NMR | Glutamine, acetone, acetate, choline, propionate, threonine | Amino acid, choline, ketone body | (Gupta et al., 2015) [46] |
OLK | Urine | GC-MS | Valine, 6-hydroxynicotic acid, cysteine, tyrosine, alanine, leucine, cystine, serine, Hippurate, phenylalanine, histamine, tryptophan | Glycolysis, amino acid, | (Xie et al., 2012) [40] |
OLK, ELK | Cell line | GC-MS | Citrate | TCA | (Karen-Ng et al., 2021) [48] |
OLP | Saliva (UW) | CE-MS | Ornithine, carnitine arginine, o-hydroxybenzoate, N-acetylglucosamine-1-phosphate, ribose-5-phosphate | Pentose phosphate, urea cycle | (Ishikawa et al., 2018) [62] |
OLP | Saliva (UW) | CE-MS | Indole-3-acetate, ethanolamine phosphate, trimethylamine N-oxide, putrescine, creatinine, 5-aminovaerate, pipecolate, N-acetylputerscine, gamma-Butyrobetaine, N-acetylhistidine, o-Acetylcartinine, N1-Acetylspermine, 21- Deoxyinosine, N-Acetylglucosamine | Lysine metabolism, sphingolipid, amino acid | (Ishikawa et al., 2019) [63] |
OLP | Saliva (UW) | CPSI-MS | Putrescine, cadaverine, thymidine, adenosine, 5-aminopentoate, Hippuric acid, phosphocholine, glucose, serine, adrenic acid | aminoacyl tRNA biosynthesis, arginine/proline metabolism arginine biosynthesis lysine degradation and histidine metabolism | (Song et al., 2020) [41] |
OLP | Serum | UHPLC/Q-Orbitrap HRMS | Glutamic acid, LysoPC(18:0), taurine | Taurine and hypotaurine metabolism, amino acid metabolism | (Wang XS et al., 2020) [53] |
OLP | Serum | UHPLC/Q-Orbitrap HRMS | 12 differential metabolites between OELP and ROLP | Alanine. Aspartate, glutamate matabolism | (Xin MZ et al., 2021) [55] |
OLP | Serum | UPLC-QTOF- MS | 10 differential metabolites between OELP and Control | Receptor-mediated G-protein linked signaling pathway, glycosylphosphatidylinositol-anchor biosyntehesis, glycerophospholipid metabolism | (Yang X et al., 2017) [56] |
OLP | Plasma | UHPLC/Q-Orbitrap HRMS | Sphingosine, deoxycholic, 3b,7a-Dihydroxy-5b-chlanoic acid, 1-linoleoyl-sn-glycero-3-phosphoethanolamine,citric acid, isoleucine, cis-5-tetradecanolycarnitinem decanoyl carnitine, lactic acid, docosahexaenoic acid, 2-amino- 1,3,4-octadecanetriol, arginine, acetyl carnitine | Primary bile acid biosynthesis, alanine. Aspartate, glutamate metabolism | (Li X et al., 2022) [64] |
OLP | Urine | UHPLC/Q-Orbitrap HRMS | 6-methyladenine, phenylpyruvic acid, ribonic acid, L-arginine, Gamma-glutamyltyrosine, kynurenic acid, phytosphingosine, L-gamma-glutamyl-L-isoleucine, sphinganine, panthetheine, L-urobillin, L-urobillinogen | Sphingolipid metabolism, porphyrin and chlorophyll metabolism, arginine/proline metabolism, tryptophan metabolism. | (Li XZ et al., 2017) [54] |
OLP | Urine | LC-MS | 30 differentially expressed metabolites identified of reticular OLP | Carbohydrate metabolism | (Yang et al., 2020) [58] |
OLP | Tissue | LC-MS | p-chlorophenylalanine, 6,8-Dihydroxypurine, taurine, malic acid, L-Glutamic acid, choline, adrenochrome, lactic acid, aspartaic acid, L-acetylcarnitine, L-serine,didymin, L-glutamine, S-ethyl isothiourea, PE(P-18:1(9Z)/16:1(9Z)), threonic acid, L-histidine, L-tryptophan, prostaglandin E2, guanine, citric acid | Aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, Glycine, serine, and threonine metabolism, Histidine metabolism, Pyruate metabolism, Taurine and hypotaurine metabolism, Tryptophan metabolism | (Yang X.Y et al., 2018) [57] |
OSF | Tissue | GC-MS | 31 differential compounds (19 identified and 12 unidentified | Not disclosed | (Musharraf et al., 2016) [60] |
Metabolites | Sample Type | OPMD | OPMD vs. Normal | OPMD vs. OSCC | OSCC vs. Normal | References |
---|---|---|---|---|---|---|
Phenylalanine | Saliva | OLK | High | High | Low | Wei et al. [43] |
Valine | Saliva | OLK | High | |||
n-eicosanoic acid | Saliva | OLK | Low | |||
Alanine | Saliva | OLK | Low | |||
n-tetradecanoic acid | Saliva | OLK | High | |||
n-dodecanoic acid | Saliva | OLK | High | |||
3-indoleproponoic acid | Saliva | OLK | Low | |||
Homocysteine | Saliva | OLK | High | |||
4-methoxyphenylacetic acid | Saliva | OLK | High | |||
Isoleucine | Saliva | OLK | Low | High | Low | |
Lactic acid | Saliva | OLK | High | Low | High | Wei et al. [37] |
Tissue | OLP | High | Yang et al. [57] | |||
Proline | Saliva | OLK | Low | High | Low | Wei et al. [43] |
Threonine | Saliva | OLK | Low | High | Low | Musharraf et al. [60] |
Glutamine | Serum | OLK | Low | High | Low | Gupta et al. [46] |
Tissue | OSF | Musharraf et al. [60] | ||||
Tissue | OLP | High | Yang et al. [57] | |||
Acetone | Serum | OLK | Low | Gupta et al. [46] | ||
Acetate | Serum | OLK | Low | |||
Choline | Serum | OLK | High | Low | High | Gupta et al. [46] |
Kong et al. [37] | ||||||
Tissue | OLP | High | Yang et al. [57] | |||
Ornithine | Saliva | OED | Low | Ishikawa et al. [50] | ||
Urine | OLP | High | Yang et al. [58] | |||
Carnitine | Saliva | OED | Low | Ishikawa et al. [50] | ||
o-hydroxybenzoate | Saliva | OED | Low | |||
n-acethylglucosamine-1-phosphate | Saliva | OED | Low | |||
Ribose-5-phosphate | Saliva | OED | Low | |||
Trimethylamine N-oxide | Saliva | Low | ||||
Arginine | Saliva | OED | Low | Ishikawa et al. [50] | ||
High | Wang et al. [53] | |||||
Putrescine | Saliva | OLK | High | Low | High | Ishikawa et al. [63] |
Song et al. [65] | ||||||
Creatinine | Saliva | OLK | Low | Ishikawa et al. [63] | ||
5-aminovalerate | Saliva | OLK | Low | |||
Pipocolate | Saliva | OLK | Low | |||
N-acetylputrescine | Saliva | OLK | Low | |||
Gamma-butyrobetaine | Saliva | OLK | Low | |||
Indole 3-acetate | Saliva | OLK | Low | |||
N1-acetylspermine | Saliva | OLK | Low | |||
2′-deoxyinosine | Saliva | OLK | Low | |||
Ethanolamine phosphate | Saliva | OLK | Low | |||
N-acetylglucosamine | Saliva | OLK | Low | |||
N-acetylhistidine | Saliva | OLK | High | |||
o-acetylcarnitine | Saliva | OLK | High | |||
Glucose | Saliva | OLK | Low | High | Low | |
Decanedioic acid, | Saliva | OLK | Low | HIgh | Tantray et al. [15] | |
2-methyloctacosane | Saliva | OLK | Low | HIgh | ||
octane | Saliva | OLK | Low | HIgh | ||
3,5-dimethyl | Saliva | OLK | Low | HIgh | ||
Pentadecane | Saliva | OLK | Low | HIgh | ||
Hentriacontane | Saliva | OLK | Low | HIgh | ||
Nonadecane | Saliva | OLK | Low | HIgh | ||
Oxalic acid | Saliva | OLK | Low | HIgh | ||
6-phenylundecanea | Saliva | OLK | Low | HIgh | ||
l-proline | Saliva | OLK | Low | HIgh | ||
2-furancarboxamide | Saliva | OLK | Low | HIgh | ||
2-isopropyl-5-methyl-1-heptanol | Saliva | OLK | Low | HIgh | ||
Pentanoic acid | Saliva | OLK | Low | HIgh | ||
Docosane | Saliva | OLK | Low | HIgh | ||
Eicosane | Saliva | OLK | High | Low | ||
2-methyl-4-keto-pentan-2-ol | Tissue | OSF | High | Low | High | Musharraf et al. [60] |
(6E)-2,6-Dimethyl-2,6-octadiene | Tissue | OSF | Low | High | ||
3-heptanol | Tissue | OSF | Low | High | Low | |
4-hydroxybenzaldehyde | Tissue | OSF | Low | High | Low | |
cis-p-methan-3-one | Tissue | OSF | Low | High | Low | |
Ethylene glycol | Tissue | OSF | Low | High | Low | |
Geraniol formte | Tissue | OSF | Low | High | Low | |
Glycine | Tissue | OSF | Low | High | Low | |
Lysine | Tissue | OSF | Low | High | Low | |
Melibiose | Tissue | OSF | High | Low | High | |
Stearic acid | Tissue | OSF | High | Low | High | |
Norleucine | Tissue | OSF | Low | High | Low | |
Glutamic acid | Tissue | OSF | Low | High | Low | Musharraf et al. [60] |
Serum | OLP | Wang et al. [53] | ||||
Tissue | OLP | High | Yang et al. [57] | |||
Serine | Tissue | OSF | Low | High | Low | Musharraf et al. [60] |
Saliva | OLK | Song et al. [41] | ||||
Tissue | OLP | High | Yang et al. [57] | |||
Cadaverine | Saliva | OLK | High | Low | High | Song et al. [41] |
Thymidine | Saliva | OLK | High | Low | High | |
Adenosine | Saliva | OLK | High | Low | High | |
5-aminopentoate | Saliva | OLK | High | Low | High | |
Hippuric acid | Saliva | OLK | High | High | High | |
Phospotocholine | Saliva | OLK | Low | High | Low | |
Adrenic acid | Saliva | OLK | Low | High | Low | |
6-hydroxynicotinic acid | Urine | OLK | High | Xie et al. [40] | ||
Tyrosine | Urine | OLK | Low | |||
Cysteine | Urine | OLK | Low | |||
LysoPE(20:2) | Serum | OLP | High | Wang et al. [53] | ||
LysoPE(20:4) | Serum | OLP | High | |||
LysoPC(20:4) | Serum | OLP | High | |||
3-Indoxyl sulphate | Serum | OLP | Low | |||
Testosterone sulfate | Serum | OLP | Low | |||
5-Aminopentanamide | Serum | OLP | Low | |||
11,12-EpETrE | Serum | OLP | Low | |||
Eicosapentaenoic acid | Serum | OLP | Low | |||
Sphingosine 1- phosphate | Serum | OLP | Low | |||
Pyroglutamic acid | Serum | OLP | Low | |||
LysoPC(16:1) | Serum | OLP | Low | |||
LysoPC(P-16:0) | Serum | OLP | Low | |||
LysoPC(P-16:0) | Serum | OLP | Low | |||
Citric acid | Serum | OLP | Low | |||
Acetyl-L-carnitine | Serum | OLP | Low | |||
Methionine | Serum | OLP | Low | |||
Leucine/Isoleucine/Norleucine | Serum | OLP | Low | |||
Uric acid | Serum | OLP | Low | |||
p-Chlorophenylalanine | Tissue | ROLP | Low | Yang et al. [57] | ||
Urine | ROLP | High | Yang et al. [58] | |||
6,8-Dihydroxypurine | Tissue | ROLP | High | Yang et al. [57] | ||
Malic acid | Tissue | ROLP | High | |||
Adrenochrome | Tissue | ROLP | Low | |||
Aspartic acid | Tissue | ROLP | High | |||
L-Acetylcartniitine | Tissue | ROLP | High | |||
Didymin | Tissue | ROLP | Low | |||
S-ethyl isothiourea | Tissue | ROLP | Low | |||
PE(P-18:1(9Z)/16:1(9Z) | Tissue | ROLP | Low | |||
Threonic acid | Tissue | ROLP | High | |||
L-histidine | Tissue | ROLP | High | |||
L-tryptophan | Tissue | ROLP | Low | |||
Prostaglandin E2 | Tissue | ROLP | High | |||
Guanine | Tissue | ROLP | Low | |||
Taurine | Serum | OLP | Low | Wang et al. [53] | ||
Serum | OLP | Low | Sridharan et al. [61] | |||
Tissue | OLP | High | Yang et al. [57] | |||
Citric acid | Serum | OLP | Low | Wang et al. [53]; | ||
Tissue | OLP | High | Yang et al. [57] | |||
Pro-Leu | Urine | ROLP | Low | Yang et al. [58] | ||
Oxalacetic acid | Urine | ROLP | High | |||
Histidinol | Urine | ROLP | High | |||
Aminoacetone | Urine | ROLP | High | |||
N,N-Demetylaniline | Urine | ROLP | High | |||
14-cis-Retinal | Urine | ROLP | Low | |||
Kynurenic acid | Urine | ROLP | Low | |||
5-Aminopentanoic acid | Urine | ROLP | Low | |||
Isobutyryl carnitine | Urine | ROLP | Low | |||
Methylarsonite | Urine | ROLP | High | |||
3,4-Dihydroxymandelic acid | Urine | ROLP | High | |||
Chlorate | Urine | ROLP | High | |||
Hexadecanamide | Urine | ROLP | High | |||
Ala-His | Urine | ROLP | Low | |||
Succinic acid | Urine | ROLP | High | |||
Anthranilic acid | Urine | ROLP | Low | |||
Asn-Thr | Urine | ROLP | Low | |||
Methoxyacetic acid | Urine | ROLP | High | |||
D-(-)_Lyxose | Urine | ROLP | Low | |||
Carnosine | Urine | ROLP | Low | |||
Trp-Val | Urine | ROLP | Low | |||
Arg-Ile | Urine | ROLP | Low | |||
2-Oxo-4-methylthiobutanoic acid | Urine | ROLP | High | |||
Phe-Asp | Urine | ROLP | Low | |||
2-trans,4-cis-Decadienoylcarnitine | Urine | ROLP | Low | |||
9-Decenoylcarnitine | Urine | ROLP | Low | |||
Arg-Thr | Urine | ROLP | Low | |||
PE(20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)) | Serum | EOLP | High | Yang et al. [56] | ||
PE(14:0/14:0) | Serum | EOLP | High | |||
LysoPE(0:0/18:0) | Serum | EOLP | High | |||
Prostaglandin G1 | Serum | EOLP | High | |||
Leukotriene D4 | Serum | EOLP | High | |||
Protoporphyrinogen IX | Serum | EOLP | High | |||
VPGPR Enterostatin | Serum | EOLP | High | |||
Casomorphin | Serum | EOLP | High | |||
Pregnanediol | Serum | EOLP | Low | |||
20-Carboxy-leukotriene B4 | Serum | EOLP | High | |||
Deoxycholic acid disulfate | Saliva | OLK | High | High | Sridharan et al. [42] | |
6-beta-hydroxytriamcinolone acetonide | Saliva | OLK | High | High | ||
Etoposide glucuronide | Saliva | OLK | High | High | ||
Sativic acid | Saliva | OLK | High | High | ||
13-cis-retinol | Saliva | OLK | High | High | ||
16-iodo-hexadecanoic acid | Saliva | OLK | High | High | ||
Prephytoene diphosphate | Saliva | OLK | High | High | ||
PGF1a alcohol | Saliva | OLK | High | High | ||
Hexadecanedioic acid | Saliva | OLK | High | High | ||
Tetradecanedioic acid | Saliva | OLK | High | High | ||
17beta-Estradiol | Saliva | OLK | High | High | ||
Hydroquinine 10,11-dihydroxy | Saliva | OLK | High | High | ||
1-methylhistidine | Saliva | OLK | High | High | ||
Inositiol 1,3,4-triphosphate | Saliva | OLK | High | High | ||
Pseudoridine | Saliva | OLK | High | High | ||
Spaglumic acid | Saliva | OLK | High | High | ||
D-Glycerate 2-phosphate | Saliva | OLK | High | High | ||
2-Hyroxymestranol | Saliva | OLK | High | High | ||
Octopine | Saliva | OLK | High | High | ||
Fumarylacetoacetic acid | Saliva | OLK | High | High | ||
4-Nitroquinoline -1 oxide | Saliva | OLK | High | High | ||
Estrone 3-sulfate | Saliva | OLK | High | High | ||
Etidronic acid | Saliva | OLK | High | High | ||
Dihydroisolysergic acid II | Saliva | OLK | High | High | ||
2-Oxoarginine | Saliva | OLK | High | High | ||
Octadecanoic acid | Saliva | OLK | High | High | ||
Norcocaine nitroxude | Saliva | OLK | High | High | ||
gamma-Aminobutry-lysine | Saliva | OLK | High | High | ||
9-choloro-10-hydroxy-hexa decanoic acid | Saliva | OLK | High | High | ||
Dextrophan sulfate | Saliva | OLK | High | High | ||
Sphinganine-1-phosphate | Saliva | OLK | High | High | ||
4-Hydroaminoquinolne N-oxide | Saliva | OLK | High | High | ||
Betana | Saliva | OLK | High | High | ||
Undecaprenyl diphosphate | Saliva | OLK | High | High | ||
D-Urobillinogen | Saliva | OLK | High | High | ||
Estrone-3-glucoronide | Saliva | OLK | High | High | ||
(S)-Ureidoglycolic acid | Saliva | OLK | High | High | ||
12-amino-octadecanoic acid | Saliva | OLK | Low | Low | ||
Ubiquinone | Saliva | OLK | Low | Low | ||
Deoxypodophyllotoxin | Saliva | OLK | Low | Low | ||
Zolpidem Metabolite II | Saliva | OLK | Low | Low | ||
Estradiol Valerate | Saliva | OLK | Low | Low | ||
Neuraminic acid | Saliva | OLK | Low | Low | ||
L-Homocysteic acid | Saliva | OLK | Low | Low | ||
Isosorbide dinitrate | Saliva | OLK | Low | Low | ||
Muramic acid | Saliva | OLK | Low | Low | ||
Retinol phosphate | Saliva | OLK | Low | Low | ||
3-Hydroxylidocaine glucuronide | Saliva | OLK | Low | Low | ||
Citrate | Cell line | OLK | High | |||
Homocysteine | Cell line | OLK | High | Karen-Ng et al. [48] | ||
N1-methyladenosine | Cell line | OLK | High | |||
Glutathione | Cell line | OLK | High | |||
Gulono-1,4-lactone | Cell line | OLK | High | |||
Glutamate | Cell line | OLK | Low | |||
Beta-hydroxyisovalerate | Cell line | OLK | Low | |||
Alpha-hydroxyisovalerate | Cell line | OLK | Low | |||
3-hydroxyisobutyrate | Cell line | OLK | Low | |||
Myristoleate | Cell line | OLK | Low | |||
Palmitoleate | Cell line | OLK | Low | |||
10-heptadecenoate | Cell line | OLK | Low | |||
Docosapentaenoate | Cell line | OLK | Low | |||
Docosahexaenoate | Cell line | OLK | Low | |||
Linoleate | Cell line | OLK | Low | |||
Arachidonate | Cell line | OLK | Low | |||
Glycerol | Cell line | OLK | Low | |||
Hypoxanthine | Cell line | OLK | Low | Karen-Ng et al. [48]; | ||
Serum | OLP | Low | Wang et al. [53] |
5. Clinical Utility of Using Metabolomics for Oral Leukoplakia
6. Future Direction
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iocca, O.; Sollecito, T.P.; Alawi, F.; Weinstein, G.S.; Newman, J.G.; De Virgilio, A.; Di Maio, P.; Spriano, G.; Pardiñas López, S.; Shanti, R.M. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck 2020, 42, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Urizar, J.M.; Lafuente-Ibáñez de Mendoza, I.; Warnakulasuriya, S. Malignant transformation of oral leukoplakia: Systematic review and meta-analysis of the last 5 years. Oral. Dis. 2021, 27, 1881–1895. [Google Scholar] [CrossRef] [PubMed]
- Brouns, E.; Baart, J.; Karagozoglu, K.; Aartman, I.; Bloemena, E.; van der Waal, I. Malignant transformation of oral leukoplakia in a well-defined cohort of 144 patients. Oral. Dis. 2014, 20, e19–e24. [Google Scholar] [CrossRef] [PubMed]
- Jayasooriya, P.R.; Dayaratne, K.; Dissanayake, U.B.; Warnakulasuriya, S. Malignant transformation of oral leukoplakia: A follow-up study. Clin. Oral. Investig. 2020, 24, 4563–4569. [Google Scholar] [CrossRef]
- Nevanpää, T.T.; Terävä, A.E.; Laine, H.K.; Rautava, J. Malignant transformation of oral epithelial dysplasia in Southwest Finland. Sci. Rep. 2022, 12, 8261. [Google Scholar] [CrossRef]
- Hankinson, P.M.; Mohammed-Ali, R.I.; Smith, A.T.; Khurram, S.A. Malignant transformation in a cohort of patients with oral epithelial dysplasia. Br. J. Oral. Maxillofac. Surg. 2021, 59, 1099–1101. [Google Scholar] [CrossRef]
- Darling, M.R.; Hwang, J.T.K.; Dickson, B.J.; Cutz, J.C.; Salama, S.; McCord, C.; Pritzker, K.P.H.; Mock, D.; Thompson, L.D.R. Assessing Oral Epithelial Dysplasia Risk for Transformation to Cancer: Comparison Between Histologic Grading Systems Versus S100A7 Immunohistochemical Signature-based Grading. Appl. Immunohistochem. Mol. Morphol. 2023, 31, 399–405. [Google Scholar] [CrossRef]
- Choi, S.; Myers, J.N. Molecular pathogenesis of oral squamous cell carcinoma: Implications for therapy. J. Dent. Res. 2008, 87, 14–32. [Google Scholar] [CrossRef]
- da Silva, S.D.; Ferlito, A.; Takes, R.P.; Brakenhoff, R.H.; Valentin, M.D.; Woolgar, J.A.; Bradford, C.R.; Rodrigo, J.P.; Rinaldo, A.; Hier, M.P.; et al. Advances and applications of oral cancer basic research. Oral. Oncol. 2011, 47, 783–791. [Google Scholar] [CrossRef]
- Shen, Z. Genomic instability and cancer: An introduction. J. Mol. Cell Biol. 2011, 3, 1–3. [Google Scholar] [CrossRef]
- Califano, J.; van der Riet, P.; Westra, W.; Nawroz, H.; Clayman, G.; Piantadosi, S.; Corio, R.; Lee, D.; Greenberg, B.; Koch, W.; et al. Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res. 1996, 56, 2488–2492. [Google Scholar] [CrossRef] [PubMed]
- Vitorio, J.G.; Duarte-Andrade, F.F.; Dos Santos Fontes Pereira, T.; Fonseca, F.P.; Amorim, L.S.D.; Martins-Chaves, R.R.; Gomes, C.C.; Canuto, G.A.B.; Gomez, R.S. Metabolic landscape of oral squamous cell carcinoma. Metabolomics 2020, 16, 105. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ma, R.; Cheng, W.; Qin, M.; Guo, W.; Qi, Y.; Dai, J. Sijunzi decoction ameliorates gastric precancerous lesions via regulating oxidative phosphorylation based on proteomics and metabolomics. J. Ethnopharmacol. 2024, 318, 116925. [Google Scholar] [CrossRef] [PubMed]
- Tzimas, K.; Pappa, E. Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review. Metabolites 2023, 13, 3. [Google Scholar] [CrossRef]
- Tantray, S.; Sharma, S.; Prabhat, K.; Nasrullah, N.; Gupta, M. Salivary metabolite signatures of oral cancer and leukoplakia through gas chromatography-mass spectrometry. J. Oral. Maxillofac. Pathol. 2022, 26, 31–37. [Google Scholar] [CrossRef]
- Warnakulasuriya, S. Clinical features and presentation of oral potentially malignant disorders. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2018, 125, 582–590. [Google Scholar] [CrossRef]
- McCord, C.; Kiss, A.; Magalhaes, M.A.; Leong, I.T.; Jorden, T.; Bradley, G. Oral Squamous Cell Carcinoma Associated with Precursor Lesions. Cancer Prev. Res. 2021, 14, 873–884. [Google Scholar] [CrossRef]
- Chen, X.; Yu, D. Metabolomics study of oral cancers. Metabolomics 2019, 15, 22. [Google Scholar] [CrossRef]
- Naz, S.; Moreira dos Santos, D.C.; García, A.; Barbas, C. Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 2014, 6, 1657–1677. [Google Scholar] [CrossRef]
- Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. J. Pharm. Biomed. Anal. 2014, 87, 1–11. [Google Scholar] [CrossRef]
- Dudzik, D.; Barbas-Bernardos, C.; García, A.; Barbas, C. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J. Pharm. Biomed. Anal. 2018, 147, 149–173. [Google Scholar] [CrossRef] [PubMed]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass. Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Metabolomics of Head and Neck Cancer: A Mini-Review. Front. Physiol. 2016, 7, 526. [Google Scholar] [CrossRef] [PubMed]
- Patil, D.J.; More, C.B. Salivary metabolomics—A diagnostic and biologic signature for oral cancer. J. Oral. Maxillofac. Surg. Med. Pathol. 2021, 33, 546–554. [Google Scholar] [CrossRef]
- Cuevas-Córdoba, B.; Santiago-García, J. Saliva: A fluid of study for OMICS. Omics 2014, 18, 87–97. [Google Scholar] [CrossRef]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, X. Saliva Metabolomics Opens Door to Biomarker Discovery, Disease Diagnosis, and Treatment. Appl. Biochem. Biotechnol. 2012, 168, 1718–1727. [Google Scholar] [CrossRef]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The Human Urine Metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef]
- Tiziani, S.; Lopes, V.; Günther, U.L. Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 2009, 11, 269. [Google Scholar] [CrossRef]
- Rezende, T.M.B.; Freire, M.d.S.; Franco, O.L. Head and neck cancer: Proteomic advances and biomarker achievements. Cancer 2010, 116, 4914–4925. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-H.; Snyder, M. Omics profiling in precision oncology. Mol. Cell. Proteom. 2016, 15, 2525–2536. [Google Scholar] [CrossRef] [PubMed]
- Zukunft, S.; Prehn, C.; Röhring, C.; Möller, G.; Hrabě de Angelis, M.; Adamski, J.; Tokarz, J. High-throughput extraction and quantification method for targeted metabolomics in murine tissues. Metabolomics 2018, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Vallejo, M.; García, A.; Barbas, C. Method validation strategies involved in non-targeted metabolomics. J. Chromatogr. A 2014, 1353, 99–105. [Google Scholar] [CrossRef]
- Tripathi, P.; Kamarajan, P.; Somashekar, B.S.; MacKinnon, N.; Chinnaiyan, A.M.; Kapila, Y.L.; Rajendiran, T.M.; Ramamoorthy, A. Delineating metabolic signatures of head and neck squamous cell carcinoma: Phospholipase A2, a potential therapeutic target. Int. J. Biochem. Cell Biol. 2012, 44, 1852–1861. [Google Scholar] [CrossRef]
- Knobloch, T.J.; Ryan, N.M.; Bruschweiler-Li, L.; Wang, C.; Bernier, M.C.; Somogyi, A.; Yan, P.S.; Cooperstone, J.L.; Mo, X.; Brüschweiler, R.P.; et al. Metabolic Regulation of Glycolysis and AMP Activated Protein Kinase Pathways during Black Raspberry-Mediated Oral Cancer Chemoprevention. Metabolites 2019, 9, 140. [Google Scholar] [CrossRef]
- Kong, X.; Yang, X.; Zhou, J.; Chen, S.; Li, X.; Jian, F.; Deng, P.; Li, W. Analysis of plasma metabolic biomarkers in the development of 4-nitroquinoline-1-oxide-induced oral carcinogenesis in rats. Oncol. Lett. 2015, 9, 283–289. [Google Scholar] [CrossRef]
- Srivastava, S.; Roy, R.; Gupta, V.; Tiwari, A.; Srivastava, A.N.; Sonkar, A.A. Proton HR-MAS MR spectroscopy of oral squamous cell carcinoma tissues: An ex vivo study to identify malignancy induced metabolic fingerprints. Metabolomics 2011, 7, 278–288. [Google Scholar] [CrossRef]
- Somashekar, B.S.; Kamarajan, P.; Danciu, T.; Kapila, Y.L.; Chinnaiyan, A.M.; Rajendiran, T.M.; Ramamoorthy, A. Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J. Proteome Res. 2011, 10, 5232–5241. [Google Scholar] [CrossRef]
- Xie, G.X.; Chen, T.L.; Qiu, Y.P.; Shi, P.; Zheng, X.J.; Su, M.M.; Zhao, A.H.; Zhou, Z.T.; Jia, W. Urine metabolite profiling offers potential early diagnosis of oral cancer. Metabolomics 2012, 8, 220–231. [Google Scholar] [CrossRef]
- Song, X.; Yang, X.; Narayanan, R.; Shankar, V.; Ethiraj, S.; Wang, X.; Duan, N.; Ni, Y.H.; Hu, Q.; Zare, R.N. Oral squamous cell carcinoma diagnosed from saliva metabolic profiling. Proc. Natl. Acad. Sci. USA 2020, 117, 16167–16173. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, G.; Ramani, P.; Patankar, S.; Vijayaraghavan, R. Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma. J. Oral. Pathol. Med. 2019, 48, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Xie, G.; Zhou, Z.; Shi, P.; Qiu, Y.; Zheng, X.; Chen, T.; Su, M.; Zhao, A.; Jia, W. Salivary metabolite signatures of oral cancer and leukoplakia. Int. J. Cancer 2011, 129, 2207–2217. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.K.; Wei, B.J.; Lin, Z.Y.; Yang, Y.; Zhou, Z.T.; Zhang, W.D. A metabonomic approach to the diagnosis of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. Oral. Oncol. 2008, 44, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Kitabatake, K.; Ishikawa, S.; Sugimoto, M.; Enomoto, A.; Kaneko, M.; Ota, S.; Edamatsu, K.; Yusa, K.; Hemmi, T.; Okuyama, N.; et al. Salivary metabolomics for oral leukoplakia with and without dysplasia. J. Stomatol. Oral. Maxillofac. Surg. 2023, 124, 101618. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gupta, S.; Mahdi, A.A. 1H NMR-derived serum metabolomics of leukoplakia and squamous cell carcinoma. Clin. Chim. Acta 2015, 441, 47–55. [Google Scholar] [CrossRef]
- Kaur, J.; Politis, C.; Jacobs, R. Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: Diagnostic value and free radical mechanism of action. Clin. Oral. Investig. 2016, 20, 315–319. [Google Scholar] [CrossRef]
- Karen-Ng, L.P.; James, E.L.; Stephen, A.; Bennett, M.H.; Mycielska, M.E.; Parkinson, E.K. The Extracellular Metabolome Stratifies Low and High Risk Potentially Premalignant Oral Keratinocytes and Identifies Citrate as a Potential Non-Invasive Marker of Tumour Progression. Cancers 2021, 13, 4212. [Google Scholar] [CrossRef]
- Chen, X.; Yi, C.; Yang, M.J.; Sun, X.; Liu, X.; Ma, H.; Li, Y.; Li, H.; Wang, C.; He, Y.; et al. Metabolomics study reveals the potential evidence of metabolic reprogramming towards the Warburg effect in precancerous lesions. J. Cancer 2021, 12, 1563–1574. [Google Scholar] [CrossRef]
- Ishikawa, S.; Wong, D.T.W.; Sugimoto, M.; Gleber-Netto, F.O.; Li, F.; Tu, M.; Zhang, Y.; Akin, D.; Iino, M. Identification of salivary metabolites for oral squamous cell carcinoma and oral epithelial dysplasia screening from persistent suspicious oral mucosal lesions. Clin. Oral. Investig. 2019, 23, 3557–3563. [Google Scholar] [CrossRef]
- Nema, R.; Vishwakarma, S.; Agarwal, R.; Panday, R.K.; Kumar, A. Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther. 2016, 9, 3269–3280. [Google Scholar] [CrossRef] [PubMed]
- Badea, V.; Balaban, D.-P.; Amariei, C.; Nuca, C.; Bucur, L. Salivary 8-hidroxy-2-deoxy guanosine as oxidative stress biomarker for the diagnosis of periodontal disease. Farmacia 2010, 58, 660–670. [Google Scholar]
- Wang, X.S.; Sun, Z.; Liu, L.W.; Du, Q.Z.; Liu, Z.S.; Yang, Y.J.; Xue, P.; Zhao, H.Y. Potential Metabolic Biomarkers for Early Detection of Oral Lichen Planus, a Precancerous Lesion. Front. Pharmacol. 2020, 11, 603899. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Yang, X.Y.; Wang, Y.; Zhang, S.N.; Zou, W.; Wang, Y.; Li, X.N.; Wang, L.S.; Zhang, Z.G.; Xie, L.Z. Urine metabolic profiling for the pathogenesis research of erosive oral lichen planus. Arch. Oral. Biol. 2017, 73, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.Z.; Shi, Y.Y.; Li, C.S.; Zuo, L.H.; Li, N.; Liu, L.W.; Ma, H.X.; Du, Q.Z.; Xue, P.; Sun, Z.; et al. Metabolomics and Transcriptomics Analysis on Metabolic Characteristics of Oral Lichen Planus. Front. Oncol. 2021, 11, 769163. [Google Scholar] [CrossRef]
- Yang, X.Y.; Zhang, S.N.; Li, X.Z.; Wang, Y.; Yin, X.D. Analysis of human serum metabolome for potential biomarkers identification of erosive oral lichen planus. Clin. Chim. Acta 2017, 468, 46–50. [Google Scholar] [CrossRef]
- Yang, X.Y.; Li, X.Z.; Zhang, S.N. Metabolomics analysis of oral mucosa reveals profile perturbation in reticular oral lichen planus. Clin. Chim. Acta 2018, 487, 28–32. [Google Scholar] [CrossRef]
- Yang, X.Y.; Li, X.Z.; Zhang, S.N. Urinary metabolomic signatures in reticular oral lichen planus. Heliyon 2020, 6, e04041. [Google Scholar] [CrossRef]
- Goel, R.; Gheena, S.; Chandrasekhar, T.; Ramani, P.; Sherlin, H.J.; Natesan, A.; Premkumar, P. Amino Acid profile in oral submucous fibrosis: A high performance liquid chromatography (HPLC) study. J. Clin. Diagn. Res. 2014, 8, ZC44–ZC48. [Google Scholar] [CrossRef]
- Musharraf, S.G.; Shahid, N.; Naqvi, S.M.A.; Saleem, M.; Siddiqui, A.J.; Ali, A. Metabolite Profiling of Preneoplastic and Neoplastic Lesions of Oral Cavity Tissue Samples Revealed a Biomarker Pattern. Sci. Rep. 2016, 6, 38985. [Google Scholar] [CrossRef]
- Sridharan, G.; Ramani, P.; Patankar, S. Serum metabolomics in oral leukoplakia and oral squamous cell carcinoma. J. Cancer Res. Ther. 2017, 13, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Tu, M.; Sugano, A.; Yamamori, I.; Iba, A.; Yusa, K.; Kaneko, M.; Ota, S.; et al. Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids 2017, 49, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Sugimoto, M.; Edamatsu, K.; Sugano, A.; Kitabatake, K.; Iino, M. Discrimination of oral squamous cell carcinoma from oral lichen planus by salivary metabolomics. Oral. Dis. 2020, 26, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, L.; Li, N.; Jia, Q.; Wang, X.; Zuo, L.; Long, J.; Xue, P.; Sun, Z.; Zhao, H. Metabolomics based plasma biomarkers for diagnosis of oral squamous cell carcinoma and oral erosive lichen planus. J. Cancer 2022, 13, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Muir, K.; Hazim, A.; He, Y.; Peyressatre, M.; Kim, D.Y.; Song, X.; Beretta, L. Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res. 2013, 73, 4722–4731. [Google Scholar] [CrossRef]
- Duckwall, C.S.; Murphy, T.A.; Young, J.D. Mapping cancer cell metabolism with(13)C flux analysis: Recent progress and future challenges. J. Carcinog. 2013, 12, 13. [Google Scholar] [CrossRef]
- Yu, L.; Chen, X.; Sun, X.; Wang, L.; Chen, S. The Glycolytic Switch in Tumors: How Many Players Are Involved? J. Cancer 2017, 8, 3430–3440. [Google Scholar] [CrossRef]
- Kalyanaraman, B. Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 2017, 12, 833–842. [Google Scholar] [CrossRef]
- Varone, A.; Xylas, J.; Quinn, K.P.; Pouli, D.; Sridharan, G.; McLaughlin-Drubin, M.E.; Alonzo, C.; Lee, K.; Münger, K.; Georgakoudi, I. Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues. Cancer Res. 2014, 74, 3067–3075. [Google Scholar] [CrossRef]
- Cruz, M.D.; Ledbetter, S.; Chowdhury, S.; Tiwari, A.K.; Momi, N.; Wali, R.K.; Bliss, C.; Huang, C.; Lichtenstein, D.; Bhattacharya, S.; et al. Metabolic reprogramming of the premalignant colonic mucosa is an early event in carcinogenesis. Oncotarget 2017, 8, 20543–20557. [Google Scholar] [CrossRef]
- Kowalik, M.A.; Perra, A.; Ledda-Columbano, G.M.; Ippolito, G.; Piacentini, M.; Columbano, A.; Falasca, L. Induction of autophagy promotes the growth of early preneoplastic rat liver nodules. Oncotarget 2016, 7, 5788–5799. [Google Scholar] [CrossRef] [PubMed]
- Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J. Biol. Chem. 2015, 6, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Cai, G.; Su, M.; Chen, T.; Liu, Y.; Xu, Y.; Ni, Y.; Zhao, A.; Cai, S.; Xu, L.X.; et al. Urinary metabonomic study on colorectal cancer. J. Proteome Res. 2010, 9, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.S.; Gupta, P.C. Economic History of Tobacco Production: From Colonial Origins to Contemporary Trends; Goverment of India: New Delhi, India, 2004. [Google Scholar]
- James, E.L.; Michalek, R.D.; Pitiyage, G.N.; de Castro, A.M.; Vignola, K.S.; Jones, J.; Mohney, R.P.; Karoly, E.D.; Prime, S.S.; Parkinson, E.K. Senescent Human Fibroblasts Show Increased Glycolysis and Redox Homeostasis with Extracellular Metabolomes That Overlap with Those of Irreparable DNA Damage, Aging, and Disease. J. Proteome Res. 2015, 14, 1854–1871. [Google Scholar] [CrossRef]
- Drexler, K.; Schmidt, K.M.; Jordan, K.; Federlin, M.; Milenkovic, V.M.; Liebisch, G.; Artati, A.; Schmidl, C.; Madej, G.; Tokarz, J.; et al. Cancer-associated cells release citrate to support tumour metastatic progression. Life Sci. Alliance 2021, 4, e202000903. [Google Scholar] [CrossRef]
- Mycielska, M.E.; Dettmer, K.; Rümmele, P.; Schmidt, K.; Prehn, C.; Milenkovic, V.M.; Jagla, W.; Madej, G.M.; Lantow, M.; Schladt, M.; et al. Extracellular Citrate Affects Critical Elements of Cancer Cell Metabolism and Supports Cancer Development In Vivo. Cancer Res. 2018, 78, 2513–2523. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Morale, M.G.; Tamura, R.E.; Rubio, I.G.S. Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models. Biomolecules 2022, 12, 357. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.; Seo, W.; Zhang, R.; Lu, C.; Wang, Y.; Luo, L.; Paul, B.; Yan, W.; Saxena, D.; et al. Targeting cellular metabolism to reduce head and neck cancer growth. Sci. Rep. 2019, 9, 4995. [Google Scholar] [CrossRef]
- Saladini, S.; Aventaggiato, M.; Barreca, F.; Morgante, E.; Sansone, L.; Russo, M.A.; Tafani, M. Metformin Impairs Glutamine Metabolism and Autophagy in Tumour Cells. Cells 2019, 8, 49. [Google Scholar] [CrossRef]
- Gutkind, J.S.; Molinolo, A.A.; Wu, X.; Wang, Z.; Nachmanson, D.; Harismendy, O.; Alexandrov, L.B.; Wuertz, B.R.; Ondrey, F.G.; Laronde, D.; et al. Inhibition of mTOR signaling and clinical activity of metformin in oral premalignant lesions. JCI Insight 2021, 6, e147096. [Google Scholar] [CrossRef] [PubMed]
- Kamarajan, P.; Rajendiran, T.M.; Kinchen, J.; Bermúdez, M.; Danciu, T.; Kapila, Y.L. Head and Neck Squamous Cell Carcinoma Metabolism Draws on Glutaminolysis, and Stemness Is Specifically Regulated by Glutaminolysis via Aldehyde Dehydrogenase. J. Proteome Res. 2017, 16, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.H.; Coloff, J.L. The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers 2019, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Eby, G.A. Treatment of acute lymphocytic leukemia using zinc adjuvant with chemotherapy and radiation--a case history and hypothesis. Med. Hypotheses 2005, 64, 1124–1126. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Stewart, D.J.; Maroun, J.A.; Nair, R.C. A randomized phase II study of cisplatin alone versus cisplatin plus disulfiram. Am. J. Clin. Oncol. 1990, 13, 119–124. [Google Scholar] [CrossRef]
- Speight, P.M.; Khurram, S.A.; Kujan, O. Oral potentially malignant disorders: Risk of progression to malignancy. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2018, 125, 612–627. [Google Scholar] [CrossRef]
- Coleman, M.C.; Asbury, C.R.; Daniels, D.; Du, J.; Aykin-Burns, N.; Smith, B.J.; Li, L.; Spitz, D.R.; Cullen, J.J. 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic. Biol. Med. 2008, 44, 322–331. [Google Scholar] [CrossRef]
- Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 2010, 9, 447–464. [Google Scholar] [CrossRef]
- Muley, P.; Olinger, A.; Tummala, H. 2-Deoxyglucose induces cell cycle arrest and apoptosisin colorectal cancer cells independent of its glycolysis inhibition. Nutr. Cancer 2015, 67, 514–522. [Google Scholar] [CrossRef]
OPMD Entity | Clinical Appearance |
---|---|
Oral leukoplakia | White patches or lesions, may have a rough, thickened, or fissured surface |
Oral erythroplakia | Red, velvety lesions that may be flat or slightly raised appearance |
Oral erythroleukoplakia | Mixed white-and-red lesions with atrophy or specked presentation |
Proliferative verrucous leukoplakia | Multifocal white plaques often with a verrucous, keratotic surface |
Oral submucous fibrosis | Pale, marble-like patches, and progressive stiffening of oral mucosa, leading to restricted mouth opening |
Oral lichen planus | Usually white, reticular, and plaque-like, with atrophic or erosive presentation |
Oral lichenoid lesions | White-and-red lesions with a reticular, striated presentation |
Metabolites | OPMD vs. OSCC | OPMD vs. Normal |
---|---|---|
Phenylalanine | High | High |
Valine | High | |
Glutamine | High | Low |
Lactic acid | Low | |
Acetone | Low | |
Acetate | Low | |
Choline | Low | |
Serine | Low | |
Citrate | High | |
1-methylhistidine | High | |
Inositol 1,3,4-triphosphate | High | |
d-glycerate-2-phosphate | High | |
4-nitroquinoline-1-oxide | High | |
2-oxoarginine | High | |
Norcocaine nitroxide | High | |
Sphinganine-1-phosphate | High | |
Pseudouridine | High | |
L-homocysteic acid | Low | |
Ubiquinone | Low | |
Neuraminic acid | Low | |
Estradiol valerate | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Faizal, N.F.; Vincent-Chong, V.K.; Ramanathan, A.; Paterson, I.C.; Karen-Ng, L.P.; Zaini, Z.M. Metabolomic Profiling of Oral Potentially Malignant Disorders and Its Clinical Values. Biomedicines 2024, 12, 2899. https://doi.org/10.3390/biomedicines12122899
Mohd Faizal NF, Vincent-Chong VK, Ramanathan A, Paterson IC, Karen-Ng LP, Zaini ZM. Metabolomic Profiling of Oral Potentially Malignant Disorders and Its Clinical Values. Biomedicines. 2024; 12(12):2899. https://doi.org/10.3390/biomedicines12122899
Chicago/Turabian StyleMohd Faizal, Nur Fatinazwa, Vui King Vincent-Chong, Anand Ramanathan, Ian C. Paterson, Lee Peng Karen-Ng, and Zuraiza Mohamad Zaini. 2024. "Metabolomic Profiling of Oral Potentially Malignant Disorders and Its Clinical Values" Biomedicines 12, no. 12: 2899. https://doi.org/10.3390/biomedicines12122899
APA StyleMohd Faizal, N. F., Vincent-Chong, V. K., Ramanathan, A., Paterson, I. C., Karen-Ng, L. P., & Zaini, Z. M. (2024). Metabolomic Profiling of Oral Potentially Malignant Disorders and Its Clinical Values. Biomedicines, 12(12), 2899. https://doi.org/10.3390/biomedicines12122899