Low-Frequency PPM1D Gene Mutations Associated with Inferior Treatment Response to CD19 Targeted CAR-T Cell Therapy in Mantle Cell Lymphoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Study
2.2. PPM1D Gene Analysis
2.3. CD19 Gene Analysis
3. Results
3.1. Prevalence of PPM1D Mutations in r/r MCL
3.2. Clinical Characteristics
3.3. CAR-T-Cell Therapy and Clinical Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armitage, J.O.; Longo, D.L. Mantle-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 2495–2506. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Wang, M.L. Mantle Cell Lymphoma in 2022—A Comprehensive Update on Molecular Pathogenesis, Risk Stratification, Clinical Approach, and Current and Novel Treatments. Am. J. Hematol. 2022, 97, 638–656. [Google Scholar] [CrossRef] [PubMed]
- Isaac, K.M.; Portell, C.A.; Williams, M.E. Leukemic Variant of Mantle Cell Lymphoma: Clinical Presentation and Management. Curr. Oncol. Rep. 2021, 23, 102. [Google Scholar] [CrossRef] [PubMed]
- Sehn, L.H.; Congiu, A.G.; Culligan, D.J.; Gironella, M.; Yoon, D.H.; Ogura, M.; Rosta, A.; Zhu, J.; Launonen, A.; Nielsen, T.; et al. No Added Benefit of Eight Versus Six Cycles of CHOP When Combined with Rituximab in Previously Untreated Diffuse Large B-Cell Lymphoma Patients: Results from the International Phase III GOYA Study. Blood 2018, 132, 783. [Google Scholar] [CrossRef]
- Silkenstedt, E.; Linton, K.; Dreyling, M. Mantle Cell Lymphoma—Advances in Molecular Biology, Prognostication and Treatment Approaches. Br. J. Haematol. 2021, 195, 162–173. [Google Scholar] [CrossRef]
- Mathys, A.; Bacher, U.; Banz, Y.; Legros, M.; Mansouri Taleghani, B.; Novak, U.; Pabst, T. Outcome of Patients with Mantle Cell Lymphoma after Autologous Stem Cell Transplantation in the Pre-CAR T-Cell Era. Hematol. Oncol. 2022, 40, 292–296. [Google Scholar] [CrossRef]
- Maddocks, K. Update on Mantle Cell Lymphoma. Blood 2018, 132, 1647–1656. [Google Scholar] [CrossRef]
- Salles, G.; Barrett, M.; Foà, R.; Maurer, J.; O’Brien, S.; Valente, N.; Wenger, M.; Maloney, D.G. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv. Ther. 2017, 34, 2232–2273. [Google Scholar] [CrossRef]
- Burger, J.A. Bruton Tyrosine Kinase Inhibitors: Present and Future. Cancer J. 2019, 25, 386–393. [Google Scholar] [CrossRef]
- Wang, M.L.; Jurczak, W.; Jerkeman, M.; Trotman, J.; Zinzani, P.L.; Belada, D.; Boccomini, C.; Flinn, I.W.; Giri, P.; Goy, A.; et al. Ibrutinib plus Bendamustine and Rituximab in Untreated Mantle-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 2482–2494. [Google Scholar] [CrossRef]
- Dreyling, M.; Doorduijn, J.; Giné, E.; Jerkeman, M.; Walewski, J.; Hutchings, M.; Mey, U.; Riise, J.; Trneny, M.; Vergote, V.; et al. Ibrutinib Combined with Immunochemotherapy with or without Autologous Stem-Cell Transplantation versus Immunochemotherapy and Autologous Stem-Cell Transplantation in Previously Untreated Patients with Mantle Cell Lymphoma (TRIANGLE): A Three-Arm, Randomised, Open-Label, Phase 3 Superiority Trial of the European Mantle Cell Lymphoma Network. Lancet 2024, 403, 2293–2306. [Google Scholar] [CrossRef] [PubMed]
- Novak, U.; Fehr, M.; Schär, S.; Dreyling, M.; Schmidt, C.; Derenzini, E.; Zander, T.; Hess, G.; Mey, U.; Ferrero, S.; et al. Combined Therapy with Ibrutinib and Bortezomib Followed by Ibrutinib Maintenance in Relapsed or Refractory Mantle Cell Lymphoma and High-Risk Features: A Phase 1/2 Trial of the European MCL Network (SAKK 36/13). eClinicalMedicine 2023, 64, 102221. [Google Scholar] [CrossRef] [PubMed]
- Tivey, A.; Shotton, R.; Eyre, T.A.; Lewis, D.; Stanton, L.; Allchin, R.; Walter, H.; Miall, F.; Zhao, R.; Santarsieri, A.; et al. Ibrutinib as First-Line Therapy for Mantle Cell Lymphoma: A Multicenter, Real-World UK Study. Blood Adv. 2024, 8, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Sesques, P.; Ferrant, E.; Safar, V.; Wallet, F.; Tordo, J.; Dhomps, A.; Karlin, L.; Brisou, G.; Vercasson, M.; Hospital-Gustem, C.; et al. Commercial Anti-CD19 CAR T Cell Therapy for Patients with Relapsed/Refractory Aggressive B Cell Lymphoma in a European Center. Am. J. Hematol. 2020, 95, 1324–1333. [Google Scholar] [CrossRef]
- Huang, Z.; Chavda, V.P.; Bezbaruah, R.; Dhamne, H.; Yang, D.-H.; Zhao, H.-B. CAR T-Cell Therapy for the Management of Mantle Cell Lymphoma. Mol. Cancer 2023, 22, 67. [Google Scholar] [CrossRef]
- Mian, A.; Hill, B.T. Brexucabtagene Autoleucel for the Treatment of Relapsed/Refractory Mantle Cell Lymphoma. Expert Opin. Biol. Ther. 2021, 21, 435–441. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Heini, A.D.; Bacher, U.; Kronig, M.-N.; Wiedemann, G.; Novak, U.; Zeerleder, S.; Mansouri Taleghani, B.; Daskalakis, M.; Pabst, T. Chimeric Antigen Receptor T-Cell Therapy for Relapsed Mantle Cell Lymphoma: Real-World Experience from a Single Tertiary Care Center. Bone Marrow Transpl. 2022, 57, 1010–1012. [Google Scholar] [CrossRef]
- Gazeau, N.; Liang, E.C.; Wu, Q.V.; Voutsinas, J.M.; Barba, P.; Iacoboni, G.; Kwon, M.; Ortega, J.L.R.; López-Corral, L.; Hernani, R.; et al. Anakinra for Refractory Cytokine Release Syndrome or Immune Effector Cell-Associated Neurotoxicity Syndrome after Chimeric Antigen Receptor T Cell Therapy. Transpl. Cell Ther. 2023, 29, 430–437. [Google Scholar] [CrossRef]
- Bonifant, C.L.; Jackson, H.J.; Brentjens, R.J.; Curran, K.J. Toxicity and Management in CAR T-Cell Therapy. Mol. Ther. Oncolytics 2016, 3, 16011. [Google Scholar] [CrossRef]
- Robertson, N.A.; Latorre-Crespo, E.; Terradas-Terradas, M.; Lemos-Portela, J.; Purcell, A.C.; Livesey, B.J.; Hillary, R.F.; Murphy, L.; Fawkes, A.; MacGillivray, L.; et al. Longitudinal Dynamics of Clonal Hematopoiesis Identifies Gene-Specific Fitness Effects. Nat. Med. 2022, 28, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Ebert, B.L. Clonal Hematopoiesis in Human Aging and Disease. Science 2019, 366, eaan4673. [Google Scholar] [CrossRef] [PubMed]
- Niroula, A.; Sekar, A.; Murakami, M.A.; Trinder, M.; Agrawal, M.; Wong, W.J.; Bick, A.G.; Uddin, M.M.; Gibson, C.J.; Griffin, G.K.; et al. Distinction of Lymphoid and Myeloid Clonal Hematopoiesis. Nat. Med. 2021, 27, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- von Beck, K.; von Beck, T.; Ferrell, P.B.; Bick, A.G.; Kishtagari, A. Lymphoid Clonal Hematopoiesis: Implications for Malignancy, Immunity, and Treatment. Blood Cancer J. 2023, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N.; Spencer Chapman, M.; Nyamondo, K.; Chen, Z.; Williams, N.; Mitchell, E.; Campbell, P.J.; Cohen, R.L.; Nangalia, J. Analysis of Somatic Mutations in Whole Blood from 200,618 Individuals Identifies Pervasive Positive Selection and Novel Drivers of Clonal Hematopoiesis. Nat. Genet. 2024, 56, 1147–1155. [Google Scholar] [CrossRef]
- Bomben, R.; Zucchetto, A.; Pozzo, F.; Tissino, E.; Bittolo, T.; Olivieri, J.; Chiarenza, A.; Zaja, F.; Del Principe, M.I.; Rossi, D.; et al. TP53 Mutations and Clinical Outcome in Chronic Lymphocytic Leukemia: Is a Threshold Still Needed? Hemasphere 2023, 7, e855. [Google Scholar] [CrossRef]
- Singh, A.; Balasubramanian, S. The Crossroads of Cancer Therapies and Clonal Hematopoiesis. Semin. Hematol. 2024, 61, 16–21. [Google Scholar] [CrossRef]
- Panagiota, V.; Kerschbaum, J.F.; Penack, O.; Stein, C.M.; Arends, C.M.; Koenecke, C.; Strzelecka, P.M.; Kloos, A.; Wiegand, L.; Lasch, A.; et al. Clinical Implications and Dynamics of Clonal Hematopoiesis in Anti-CD19 CAR T-Cell Treated Patients. Hemasphere 2023, 7, e957. [Google Scholar] [CrossRef]
- Pich, O.; Reyes-Salazar, I.; Gonzalez-Perez, A.; Lopez-Bigas, N. Discovering the Drivers of Clonal Hematopoiesis. Nat. Commun. 2022, 13, 4267. [Google Scholar] [CrossRef]
- Gibson, C.J.; Lindsley, R.C.; Tchekmedyian, V.; Mar, B.G.; Shi, J.; Jaiswal, S.; Bosworth, A.; Francisco, L.; He, J.; Bansal, A.; et al. Clonal Hematopoiesis Associated with Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma. J. Clin. Oncol. 2017, 35, 1598–1605. [Google Scholar] [CrossRef]
- Lackraj, T.; Ben Barouch, S.; Medeiros, J.J.F.; Pedersen, S.; Danesh, A.; Bakhtiari, M.; Hong, M.; Tong, K.; Joynt, J.; Arruda, A.; et al. Clinical Significance of Clonal Hematopoiesis in the Setting of Autologous Stem Cell Transplantation for Lymphoma. Am. J. Hematol. 2022, 97, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Husby, S.; Hjermind Justesen, E.; Grønbæk, K. Protein Phosphatase, Mg2+/Mn2+-Dependent 1D (PPM1D) Mutations in Haematological Cancer. Br. J. Haematol. 2021, 192, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Belotserkovskaya, E.; Golotin, V.; Uyanik, B.; Demidov, O.N. Clonal Haematopoiesis—A Novel Entity That Modifies Pathological Processes in Elderly. Cell Death Discov. 2023, 9, 345. [Google Scholar] [CrossRef] [PubMed]
- Kahn, J.D.; Miller, P.G.; Silver, A.J.; Sellar, R.S.; Bhatt, S.; Gibson, C.; McConkey, M.; Adams, D.; Mar, B.; Mertins, P.; et al. PPM1D-Truncating Mutations Confer Resistance to Chemotherapy and Sensitivity to PPM1D Inhibition in Hematopoietic Cells. Blood 2018, 132, 1095–1105. [Google Scholar] [CrossRef]
- Seipel, K.; Frey, M.; Nilius, H.; Akhoundova, D.; Banz, Y.; Bacher, U.; Pabst, T. Low-Frequency PPM1D Gene Mutations Affect Treatment Response to CD19-Targeted CAR T-Cell Therapy in Large B-Cell Lymphoma. Curr. Oncol. 2023, 30, 10463–10476. [Google Scholar] [CrossRef]
- Marcellino, B.K. PPM1D Inhibition May Allow Us to WIP Leukemia. Blood 2023, 142, 2040–2042. [Google Scholar] [CrossRef]
- Miller, P.G.; Sathappa, M.; Moroco, J.A.; Jiang, W.; Qian, Y.; Iqbal, S.; Guo, Q.; Giacomelli, A.O.; Shaw, S.; Vernier, C.; et al. Allosteric Inhibition of PPM1D Serine/Threonine Phosphatase via an Altered Conformational State. Nat. Commun. 2022, 13, 3778. [Google Scholar] [CrossRef]
- Meller, A.; De Oliveira, S.; Davtyan, A.; Abramyan, T.; Bowman, G.R.; van den Bedem, H. Discovery of a Cryptic Pocket in the AI-Predicted Structure of PPM1D Phosphatase Explains the Binding Site and Potency of Its Allosteric Inhibitors. Front. Mol. Biosci. 2023, 10, 1171143. [Google Scholar] [CrossRef]
- Seipel, K.; Abbühl, M.; Bacher, U.; Nilius, H.; Daskalakis, M.; Pabst, T. Clinical Impact of Single Nucleotide Polymorphism in CD-19 on Treatment Outcome in FMC63-CAR-T Cell Therapy. Cancers 2023, 15, 3058. [Google Scholar] [CrossRef]
- Saini, N.Y.; Swoboda, D.M.; Greenbaum, U.; Ma, J.; Patel, R.D.; Devashish, K.; Das, K.; Tanner, M.R.; Strati, P.; Nair, R.; et al. Clonal Hematopoiesis Is Associated with Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-Cell Lymphoma. Blood Cancer Discov. 2022, 3, 385–393. [Google Scholar] [CrossRef]
- Hsu, J.I.; Dayaram, T.; Tovy, A.; De Braekeleer, E.; Jeong, M.; Wang, F.; Zhang, J.; Heffernan, T.P.; Gera, S.; Kovacs, J.J.; et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell 2018, 23, 700–713.e6. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-C.; Gil, N.-Y.; Lee, H.-S.; Cho, S.-J.; Kim, K.; Chun, K.-H.; Cho, H.; Cha, H.-J. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 Is Necessary for Normal Mitotic Progression. J. Cell Biochem. 2015, 116, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Al Hinai, A.S.A.; Grob, T.; Rijken, M.; Kavelaars, F.G.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.J.; Sanders, M.A.; Löwenberg, B.; Jongen-Lavrencic, M.; Valk, P.J.M. PPM1D Mutations Appear in Complete Remission After Exposure to Chemotherapy Without Predicting Emerging AML Relapse. Leukemia 2021, 35, 2693–2697. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Kim, T.; Jeong, J.-Y.; Jo, J.-C.; Lee, W.S.; Shin, H.-J.; Lee, J.H.; Lee, H.S. Poor Prognostic Impact of High Serum Ferritin Levels in Patients with a Lower Risk of Diffuse Large B Cell Lymphoma. Int. J. Hematol. 2020, 111, 559–566. [Google Scholar] [CrossRef]
- Maura, F.; Weinhold, N.; Diamond, B.; Kazandjian, D.; Rasche, L.; Morgan, G.; Landgren, O. The Mutagenic Impact of Melphalan in Multiple Myeloma. Leukemia 2021, 35, 2145–2150. [Google Scholar] [CrossRef]
- Samur, M.K.; Roncador, M.; Aktas Samur, A.; Fulciniti, M.; Bazarbachi, A.H.; Szalat, R.; Shammas, M.A.; Sperling, A.S.; Richardson, P.G.; Magrangeas, F.; et al. High-Dose Melphalan Treatment Significantly Increases Mutational Burden at Relapse in Multiple Myeloma. Blood 2023, 141, 1724–1736. [Google Scholar] [CrossRef]
- Caballero, A.C.; Escribà-Garcia, L.; Alvarez-Fernández, C.; Briones, J. CAR T-Cell Therapy Predictive Response Markers in Diffuse Large B-Cell Lymphoma and Therapeutic Options After CART19 Failure. Front. Immunol. 2022, 13, 904497. [Google Scholar] [CrossRef]
Classification | Locus Chr7 | VAF | NT Change | AA Change |
---|---|---|---|---|
indel | 60663077 | 0.011 | AT/A | L450fs * |
missense | 60663086 | 0.016 | A/C | E451A |
nonsense | 60663106 | 0.012 | C/T | R458 * |
indel | 60663252 | 0.023 | TG/T | V507fs * |
missense | 60663304 | 0.016 | C/A | Q524K |
indel | 60663333 | 0.099 | C/CT | K535fs * |
missense | 60663400 | 0.021 | A/G | S556G |
All (n = 16) | PPM1Dwt (n = 12) | PPM1Dmut (n = 4) | p-Value | |
---|---|---|---|---|
Sex, female | 5 (31%) | 4 (50%) | 1 (25%) | 0.26 |
Median age at ID (range) | 65 (48–80) | 65 (48–75) | 63 (52–80) | 0.62 |
Prognostic index (MIPI) | 0.27 | |||
Low risk (5.3–5.4) | 2 (12%) | 2 (17%) | 0 | |
Intermediate (5.7–6.5) | 8 (50%) | 7 (58%) | 1 (25%) | |
High risk (6.7–9) | 6 (38%) | 3 (25%) | 3 (75%) | |
Initial Disease Stage | 0.45 | |||
II | 2 (12%) | 1 (8%) | 1 (25%) | |
IV | 14 (88%) | 11 (92%) | 3 (75%) | |
Treatment lines prior CAR-T | 0.58 | |||
3–1 | 11 (69%) | 9 (75%) | 2 (50%) | |
8–4 | 6 (38%) | 4 (33%) | 2 (50%) | |
Radiotherapy | 8 (50%) | 5 (42%) | 3 (75%) | 0.57 |
Complete remissions | 0.57 | |||
0 | 8 (50%) | 5 (42%) | 3 (75%) | |
2–1 | 6 (38%) | 5 (42%) | 1 (25%) | |
4–3 | 2 (12%) | 2 (12%) | 0 | |
HDCT/ASCT | 8 (50%) | 5 (42%) | 3 (75%) | 0.28 |
Bridging chemotherapy | 12 (75%) | 9 (75%) | 3 (75%) | 0.99 |
Target antigen variant | ||||
CD19 rs29048800 | 7 (44%) | 3 (25%) | 4 (100%) | 0.02 |
All (n = 15) | PPM1Dwt | PPM1Dmut | p-Value | |
---|---|---|---|---|
(n = 12) | (n = 3) | |||
Median age (range) | 72 (56–81) | 72 (56–80) | 72 (57–81) | 0.79 |
Median interval ID to CAR-T in years (range) | 4.1 | 4.6 | 1.4 | 0.17 |
(1–24) | (1.2–24) | (1–16) | ||
Disease status at CAR-T | 0.09 | |||
CR, PR, SD | 7 (47%) | 7 (58%) | 0 | |
PD | 8 (53%) | 5 (42%) | 3 (100%) | |
Median LDH pre-CAR-T U/L (range) | 190 | 181 | 320 | 0.042 |
(126–383) | (126–374) | (191–383) | ||
Median Peak CAR-T copies per μg cfDNA | 7240 | 7630 | 5277 | 0.63 |
(range) | (30–92,877) | (76–92,877) | (30–31,033) | |
Time to Peak CAR-T (days) | 13 (7–169) | 13 (7–169) | 12 (9–20) | 0.53 |
CRS | 11 (73%) | 9 (75%) | 2 (66%) | 0.57 |
Grade 1 | 6 | 4 | 2 | |
Grade 2 | 5 | 5 | 0 | |
ICANS | 6 (40%) | 5 (42%) | 1 (33%) | 0.99 |
Grade 1/2 | 3 | 3 | 0 | |
Grade 3/4 | 3 | 2 | 1 | |
Median Peak CRP | 48 | 37 | 82 | 0.063 |
mg/L (range) | (4–275) | (4–103) | (48–275) | |
Median Peak IL-6 | 592 | 412 | 639 | 0.77 |
pg/mL (range) | (7–3572) | (7–3572) | (545–1024) | |
Time to Peak IL-6 | 10 (5–34) | 7 (5–19) | 25 (14–34) | 0.01 |
days (range) | ||||
Median Peak Ferritin μg/L (range) | 1648 | 1501 | 5115 | 0.031 |
(135–16,920) | (135–16,920) | (3338–5239) | ||
Admissions to IMC/ICU | 4 (27%) | 4 (33%) | 0 | 0.52 |
Relapse/Progression | 7 (47%) | 5 (42%) | 2 (66%) | 0.57 |
Median survival time OS, months PFS, months | 13 12 | 27 32 | 1.5 1 | 0.001 0.079 |
Best remission status | ||||
CR | 12 (80%) | 11 (92%) | 1 (33%) | 0.027 |
PR | 2 (13%) | 1 (8%) | 1 (33%) | |
SD, PD | 1 (7%) | 0 (0%) | 1 (33%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seipel, K.; Benninger, L.; Bacher, U.; Pabst, T. Low-Frequency PPM1D Gene Mutations Associated with Inferior Treatment Response to CD19 Targeted CAR-T Cell Therapy in Mantle Cell Lymphoma. Therapeutics 2024, 1, 95-105. https://doi.org/10.3390/therapeutics1020009
Seipel K, Benninger L, Bacher U, Pabst T. Low-Frequency PPM1D Gene Mutations Associated with Inferior Treatment Response to CD19 Targeted CAR-T Cell Therapy in Mantle Cell Lymphoma. Therapeutics. 2024; 1(2):95-105. https://doi.org/10.3390/therapeutics1020009
Chicago/Turabian StyleSeipel, Katja, Lynn Benninger, Ulrike Bacher, and Thomas Pabst. 2024. "Low-Frequency PPM1D Gene Mutations Associated with Inferior Treatment Response to CD19 Targeted CAR-T Cell Therapy in Mantle Cell Lymphoma" Therapeutics 1, no. 2: 95-105. https://doi.org/10.3390/therapeutics1020009
APA StyleSeipel, K., Benninger, L., Bacher, U., & Pabst, T. (2024). Low-Frequency PPM1D Gene Mutations Associated with Inferior Treatment Response to CD19 Targeted CAR-T Cell Therapy in Mantle Cell Lymphoma. Therapeutics, 1(2), 95-105. https://doi.org/10.3390/therapeutics1020009