Precepts for Designing Sandwich Materials
Abstract
:1. Introduction
2. MPM SMs Fabrication Routes
2.1. Mechanical Fastening
2.2. Adhesive Bonding
2.3. Biocompatible Hybrid Joining
3. Traits of MPM SMs
3.1. Thermal Properties
3.2. Damping Properties
3.3. Mechanical Properties
3.4. Formability of MPM SMs
3.5. Failure Conditions for MPM SMs
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Rahmani, M.; Petrudi, A.M. Optimization and experimental investigation of the ability of new material from aluminum casting on pumice particles to reduce shock wave. Period. Polytech. Mech. Eng. 2020, 64, 224–232. [Google Scholar] [CrossRef]
- Harhash, M.; Carradò, A.; Palkowski, H. Lightweight titanium/polymer/titanium sandwich sheet for technical and biomedical application. Materwiss. Werksttech. 2014, 45, 1084–1091. [Google Scholar] [CrossRef]
- Harhash, M.; Palkowski, H.; Sguazzo, C.; Hartmann, S. Experimental and numerical investigations of metal/polymer/metallaminates: Thermo-mechanical and forming characteristics. Clausthal. Zent. Mater. 2016, 6, 31–45. Available online: https://www.researchgate.net/publication/290325265 (accessed on 10 February 2021).
- Koštial, P.; Rusnák, V.; Malinarič, S.; Jančíková, Z.; Valíček, J.; Harničárová, M. Thermal properties of sandwiches for applications in transportation, In Advanced Structured Materials; Springer: Berlin/Heidelberg, Germany, 2017; pp. 179–184. [Google Scholar] [CrossRef]
- Tarlochan, F. Sandwich structures for energy absorption applications: A review. Materials 2021, 14, 5731. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Ma, L.; Liu, Q.; Feng, L.; Wang, Z.; Ohrndorf, A.; Christ, H.J.; Xiong, J. Impact response and energy absorption of human skull cellular bones. J. Mech. Behav. Biomed. Mater. 2018, 81, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Zenkert, D. An Introduction to Sandwich Structures, student edition, 2nd ed.; DTU Mechanical Engineering, Technical University of Denmark: Lyngby, Denmark, 2005. [Google Scholar]
- Harhash, M.; Carrado, A.; Palkowski, H. Forming Limit Diagram of Steel/Polymer/Steel Sandwich Systems for the Automotive Industry. In Advanced Composites for Aerospace, Marine, and Land Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 243–254. [Google Scholar] [CrossRef]
- Harris, B. A perspective view of composite materials development. Mater. Des. 1991, 12, 259–272. [Google Scholar] [CrossRef]
- Chen, Y.S.; Hsu, T.J.; Chen, S.I. Vibration damping characteristics of laminated steel sheet. Metall. Trans. A 1991, 22, 653–656. [Google Scholar] [CrossRef]
- Vitale, J.P.; Francucci, G.; Stocchi, A. Thermal conductivity of sandwich panels made with synthetic and vegetable fiber vacuum-infused honeycomb cores. J. Sandw. Struct. Mater. 2017, 19, 66–82. [Google Scholar] [CrossRef]
- Carradò, A.; Faerber, J.; Niemeyer, S.; Ziegmann, G.; Palkowski, H. Metal/polymer/metal hybrid systems: Towards potential formability applications. Compos. Struct. 2011, 93, 715–721. [Google Scholar] [CrossRef]
- Reggente, M.; Harhash, M.; Kriegel, S.; Masson, P.; Faerber, J.; Pourroy, G.; Palkowski, H.; Carradò, A. Resin-free three-layered Ti/PMMA/Ti sandwich materials: Adhesion and formability study. Compos. Struct. 2019, 218, 107–119. [Google Scholar] [CrossRef]
- Palkowski, H.; Sokolova, O.A.; Carradò, A. Sandwich Materials. In Encyclopedia of Automotive Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 1–17. [Google Scholar] [CrossRef]
- Sharma, S. Sandwich Steels for Crash Energy Absorption Applications. Ph.D. Dissertation, University of Warwick, Coventry, UK, 2014. [Google Scholar]
- Palomba, G.; Epasto, G.; Crupi, V. Lightweight sandwich structures for marine applications: A review. Mech. Adv. Mater. Struct. 2021, 29, 4839–4864. [Google Scholar] [CrossRef]
- Guo, H.; Yuan, H.; Zhang, J.; Ruan, D. Review of sandwich structures under impact loadings: Experimental, numerical and theoretical analysis. Thin-Walled Struct. 2024, 196, 111541. [Google Scholar] [CrossRef]
- Birman, V.; Kardomateas, G.A. Review of current trends in research and applications of sandwich structures. Compos. B Eng. 2018, 142, 221–240. [Google Scholar] [CrossRef]
- Messler, R.W. The challenges for joining to keep pace with advancing materials and designs. Mater. Des. 1995, 16, 261–269. [Google Scholar] [CrossRef]
- Messler, R.W. Joining Composite Materials and Structures: Some Thought-Provoking Possibilities. Join. Mater. Struct. 2004, 17, 51–75. [Google Scholar] [CrossRef]
- Silva, L.R.R.; Marques, E.A.S.; Da Silva, L.F.M. Polymer joining techniques state of the art review. Weld. World 2021, 65, 2023–2045. [Google Scholar] [CrossRef]
- Thoppul, S.D.; Finegan, J.; Gibson, R.F. Mechanics of mechanically fastened joints in polymer-matrix composite structures—A review. Compos. Sci. Technol. 2009, 69, 301–329. [Google Scholar] [CrossRef]
- Messler, R.W. Mechanical Joining. In Joining of Materials and Structures; Elsevier: Amsterdam, The Netherlands, 2004; pp. 45–104. [Google Scholar] [CrossRef]
- Al-Obaidi, A. Ultrasonic Joining of Metal-Polymer Surfaces. 2017. Available online: https://www.researchgate.net/publication/330452244 (accessed on 18 March 2021).
- Altmeyer, J. Fundamental Characteristics of Friction Riveted Multi-Material Joints. Ph.D. Dissertation, Technische Universität Hamburg-Harburg, Hamburg, Germany, 2015. [Google Scholar]
- Daniel; Triadi, S.T.; Wirawan, R.; Prajetelistia, E.; Judawisastra, H. Pull-out resistance study of mechanical joints on sandwich materials: A review. Plast. Rubber Compos. 2023, 52, 1–11. [Google Scholar] [CrossRef]
- Harhash, M.; Sokolova, O.; Carradó, A.; Palkowski, H. Mechanical properties and forming behaviour of laminated steel/polymer sandwich systems with local inlays—Part 1. Compos. Struct. 2014, 118, 112–120. [Google Scholar] [CrossRef]
- Liu, J.G.; Xue, W. Formability of AA5052/polyethylene/AA5052 sandwich sheets. Trans. Nonferrous Met. Soc. China 2013, 23, 964–969. [Google Scholar] [CrossRef]
- Shin, K.S.; Kim, K.J.; Choi, S.-W.; Rhee, M.H. Mechanical Properties of Aluminum/Polypropylene/Aluminum Sandwich Sheets. Met. Mater. 1999, 5, 613–618. [Google Scholar] [CrossRef]
- Minchenkov, K.; Vedernikov, A.; Safonov, A.; Akhatov, I. Thermoplastic pultrusion: A review. Polymers 2021, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Harhash, M.; Fischer, T.; Grubenmann, M.; Hua, W.; Heingärtner, J.; Kuhtz, M.; Gude, M.; Hora, P.; Ziegmann, G.; Palkowski, H. Top-hat crashboxes of thermoplastic fibre-metal-laminates processed in one-step thermoforming: Experimental and numerical study. Compos. B Eng. 2021, 226, 109367. [Google Scholar] [CrossRef]
- Nestler, D.; Jung, H.; Arnold, S.; Wielage, B.; Nendel, S.; Kroll, L. Thermoplastische Hybridlaminate mit variabler Metallkomponente. Materwiss. Werksttech. 2014, 45, 531–536. [Google Scholar] [CrossRef]
- Wielage, B.; Nestler, D.; Steger, H.; Kroll, L.; Tröltzsch, J.; Nendel, S. CAPAAL and CAPET-New Materials of High-Strength, High-Stiff Hybrid Laminates, Integrated Systems. In Integrated Systems, Design and Technology 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–25. [Google Scholar]
- Novák, L.; Fojtl, L.; Kadlečková, M.; Maňas, L.; Smolková, I.; Musilová, L.; Minařík, A.; Mráček, A.; Sedláček, T.; Smolka, P. Surface modification of metallic inserts for enhancing adhesion at the metal–polymer interface. Polymers 2021, 13, 4015. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Putman, C.; Vaidya, U.K. Mechanisms of interfacial adhesion in metal-polymer composites—Effect of chemical treatment. Compos. Part A Appl. Sci. Manuf. 2011, 42, 906–915. [Google Scholar] [CrossRef]
- Zou, X.; Liu, L.; Chen, T.; Wu, L.; Chen, K.; Kong, L.; Wang, M. Laser surface treatment to enhance the adhesive bonding between steel and CFRP: Effect of laser spot overlapping and pulse fluence. Opt. Laser Technol. 2023, 159, 109002. [Google Scholar] [CrossRef]
- Carradò, A.; Sokolova, O.; Donnio, B.; Palkowski, H. Influence of corona treatment on adhesion and mechanical properties in metal/polymer/metal systems. J. Appl. Polym. Sci. 2011, 120, 3709–3715. [Google Scholar] [CrossRef]
- Mandolfino, C.; Lertora, E.; Gambaro, C. Influence of cold plasma treatment parameters on the mechanical properties of polyamide homogeneous bonded joints. Surf. Coat. Technol. 2017, 313, 222–229. [Google Scholar] [CrossRef]
- Bajpai, P. The carbon fiber/carbon fiber-reinforced plastic/recycled carbon fiber-reinforced polymer market. In Carbon Fiber; Elsevier: Amsterdam, The Netherlands, 2021; pp. 157–170. [Google Scholar] [CrossRef]
- Czerwinski, F. Current trends in automotive lightweighting strategies and materials. Materials 2021, 14, 6631. [Google Scholar] [CrossRef]
- Leite Cavalcanti, W.; Brune, K.; Noeske, M.; Tserpes, K.; Ostachowicz, W.M.; Schlag, M. Adhesive Bonding of Aircraft Composite Structures Non-Destructive Testing and Quality Assurance Concepts; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Palkowski, H.; Carradò, A. Three-layered sandwich material for lightweight applications. Emerg. Mater. Res. 2014, 3, 130–135. [Google Scholar] [CrossRef]
- Engel, B.; Buhl, J. Forming of Sandwich Sheets Considering Changing Damping Properties. In Metal Forming—Process, Tools, Design; IntechOpen: London, UK, 2012; pp. 85–108. [Google Scholar] [CrossRef]
- Saravi, M.E.; Vojdani, M.; Bahrani, F. Evaluation of cellular toxicity of three denture base acrylic resins. J. Dent. 2012, 9, 180–188. [Google Scholar]
- Naik, R.K.; Panda, S.K.; Racherla, V. A new method for joining metal and polymer sheets in sandwich panels for highly improved interface strength. Compos. Struct. 2020, 251, 112661. [Google Scholar] [CrossRef]
- Reggente, M.; Masson, P.; Dollinger, C.; Palkowski, H.; Zafeiratos, S.; Jacomine, L.; Passeri, D.; Rossi, M.; Vrana, N.E.; Pourroy, G.; et al. Novel Alkali Activation of Titanium Substrates to Grow Thick and Covalently Bound PMMA Layers. ACS Appl. Mater. Interfaces 2018, 10, 5967–5977. [Google Scholar] [CrossRef]
- Li, D.; Zheng, Q.; Wang, Y.; Chen, H. Combining surface topography with polymer chemistry: Exploring new interfacial biological phenomena. Polym. Chem. 2014, 5, 14–24. [Google Scholar] [CrossRef]
- Dara, P.H.; Loos, A.C. Thermoplastic Matrix Composite Processing Model; NASA Technical Report; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1 September 1985. Available online: https://ntrs.nasa.gov/search.jsp?R=19860012148 (accessed on 8 January 2020).
- Awaja, F. Autohesion of polymers. Polymer 2016, 97, 387–407. [Google Scholar] [CrossRef]
- Newaz, G.M. Advances in Thermoplastic Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 1987. [Google Scholar]
- Prager, S.; Tirrell, M. The healing process at polymer-polymer interfaces. J. Chem. Phys. 1981, 75, 5194–5198. [Google Scholar] [CrossRef]
- Shi, H. Resistance Welding of Thermoplastic Composites-Process and Performance. Ph.D. Thesis, Delft University of Technology, Delft, The Nertherlands, 2014. [Google Scholar] [CrossRef]
- Loos, A.C.; Li, M.-C. Non-Isothermal Autohesion Model for Amorphous Thermoplastic Composites. J. Thermoplast. Compos. Mater. 1994, 7, 280–310. [Google Scholar] [CrossRef]
- Mantell, S.C.; Springer, G.S. Manufacturing Process Models for Thermoplastic Composites. J. Compos. Mater. 1992, 26, 2348–2377. [Google Scholar] [CrossRef]
- Grouve, W.J.B. Weld Strength of Laser-Assisted Tape-Placed Thermoplastic Composites. Ph.D. Thesis, University of Twente, Entschede, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Lee, W.I.; Springer, G.S. A Model of the Manufacturing Process of Thermoplastic Matrix Composites. J. Compos. Mater. 1987, 21, 1017–1055. [Google Scholar] [CrossRef]
- Di Boon, Y.; Joshi, S.C.; Bhudolia, S.K. Review: Filament winding and automated fiber placement with in situ consolidation for fiber reinforced thermoplastic polymer composites. Polymers 2021, 13, 1951. [Google Scholar] [CrossRef]
- Weidmann, F.C. On the In-Situ Manufacture of Thermoplastic Sandwich Structures with Continuous Fibre Reinforced Facesheets and Integral Foam Cores. Ph.D. Thesis, Technische Universität Clausthal, Clausthal-Zellerfeld, Germany, 2019. [Google Scholar]
- Wool, R.P.; O’Connor, K.M. Time Dependence of Crack Healing. J. Polym. Sci. Polym. Lett. Ed. 1982, 20, 7–16. [Google Scholar] [CrossRef]
- Awaja, F.; Zhang, S. Self-bonding of PEEK for active medical implants applications. J. Adhes. Sci. Technol. 2015, 29, 1593–1606. [Google Scholar] [CrossRef]
- Nayak, G.S.; Mouillard, F.; Pourroy, V.E.; Palkowski, H.; Masson, P. Adhesion Behavior of Ti—PMMA—Ti Sandwiches for Biomedical Applications. JOM 2021, 74, 96–101. [Google Scholar] [CrossRef]
- Chouirfa, H.; Migonney, V.; Falentin-Daudré, C. Grafting bioactive polymers onto titanium implants by UV irradiation. RSC Adv. 2016, 6, 13766–13771. [Google Scholar] [CrossRef]
- Zhang, F.; Kang, E.T.; Neoh, K.G.; Wang, P.; Tan, K.L. Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials 2001, 22, 1541–1548. [Google Scholar] [CrossRef]
- Takalkar, A.S.; Chinnapandi, L.B.M. Investigation of thermal properties of Al1050/SS304 sandwich composite sheet by using a numerical, analytical and experimental approach. Mater. Res. Express 2019, 7, 016526. [Google Scholar] [CrossRef]
- Brückmann, S.; Kopp, G.; Kriescher, M.; Friedrich, H.E.; Laskowski, J.; Milow, B.; Ratke, L.; Orth, A. Functional Integrated Sandwich Structures for Vehicle Concepts of the Next Generation. In Proceedings of the International Conference on Material Science and Material Engineering, Xi’an, China, 8–9 August 2014; DEStech Publications, Inc.: Lancaster, PA, USA, 2014; pp. 581–591. [Google Scholar]
- Incropera, F.P.; de Witt, D. Fundamentals of Heat and Mass Transfer, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Le, V.T.; Ha, N.S.; Goo, N.S. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review. Compos. B Eng. 2021, 226, 109301. [Google Scholar] [CrossRef]
- Baroiu, N.; Beznea, E.F.; Coman, G.; Chirica, I. Static and thermal behaviour of ship structure sandwich panels. Therm. Sci. 2021, 25, 1109–1121. [Google Scholar] [CrossRef]
- Ditaranto, R.A.; Blasingame, W. Composite Damping of Vibrating Sandwich Beams. J. Eng. Ind. 1967, 89, 633–638. [Google Scholar] [CrossRef]
- Li, Z.; Crocker, M.J. A review on vibration damping in sandwich composite structures. Int. J. Acoust. Vibr. 2005, 10, 159–169. [Google Scholar] [CrossRef]
- Cowan, A. Sound Transmission Loss of Composite Sandwich Panels. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2013. [Google Scholar]
- Nagasankar, P.; Prabu, S.B.; Velmurugan, R. The effect of the strand diameter on the damping characteristics of fiber reinforced polymer matrix composites: Theoretical and experimental study. Int. J. Mech. Sci. 2014, 89, 279–288. [Google Scholar] [CrossRef]
- Marynowski, K.; Grochowska, K. Identification of Modal Loss Factor of a Sandwich Composite Structure with Polyethylene Terephthalate Core in the Aspect of Core Properties Determination. Mater. Sci. Appl. 2015, 06, 473–488. [Google Scholar] [CrossRef]
- Ghinet, S.; Atalla, N. Modeling thick composite laminate and sandwich structures with linear viscoelastic damping. Comput. Struct. 2011, 89, 1547–1561. [Google Scholar] [CrossRef]
- Berthelot, J.M.; Assarar, M.; Sefrani, Y.; El Mahi, A. Damping analysis of composite materials and structures. Compos. Struct. 2008, 85, 189–204. [Google Scholar] [CrossRef]
- Wennhage, P. Structural-Acoustic Optimization of Sandwich Panels. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2001. [Google Scholar]
- Han, S.; Yu, W.R. Effect of interfacial properties on the damping performance of steel–polymer sandwich cantilever beam composites. J. Vib. Control 2021, 29, 400–410. [Google Scholar] [CrossRef]
- Hunt, J.F. Cantilever Beam Static and Dynamic Response Comparison with Mid-Point Bending for Thin MDF Composite Panels. Bioresources 2013, 8, 115–129. [Google Scholar] [CrossRef]
- Vašina, M.; Hružík, L.; Bureček, A. Study of factors affecting vibration damping properties of multilayer composite structures. Manuf. Technol. 2020, 20, 104–109. [Google Scholar] [CrossRef]
- Harhash, M.; Kuhtz, M.; Richter, J.; Hornig, A.; Gude, M.; Palkowski, H. Trigger geometry influencing the failure modes in steel/polymer/steel sandwich crashboxes: Experimental and numerical evaluation. Compos. Struct. 2021, 262, 113619. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, R.; Wang, M.; Qin, Q.; Ye, Y.; Wang, T.J. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading. Int. J. Impact Eng. 2018, 122, 265–275. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Y.; Zhu, Y.; Yuan, H.; Qin, Q.; Wang, T. On axial splitting and curling behaviour of circular sandwich metal tubes with metal foam core. Int. J. Solids Struct. 2020, 202, 111–125. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Li, K.; Yuan, H.; Du, J.; Qin, Q. Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: Experimental and numerical investigations. Int. J. Impact Eng. 2022, 164, 104201. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, Q.; Li, J.; Su, B.; Zhang, J. A comparison of structural collapse of fully clamped and simply supported hybrid composite sandwich beams with geometrically asymmetric face sheets. Compos. B Eng. 2020, 201, 108398. [Google Scholar] [CrossRef]
- Kim, L.-K.; Yu, T.-X. Forming and failure behaviour of coated, laminated and sandwiched sheet metals: A review. J. Mater. Process. Technol. 1997, 63, 33–42. [Google Scholar] [CrossRef]
- Davies, J.M. Lightweight Sandwich Construction; Blackwell Science: London, UK, 2001. [Google Scholar]
- Harhash, M. Forming Behaviour of Multilayer Metal/Polymer/Metal Systems. Ph.D. Thesis, TU Clausthal, Clausthal-Zellerfeld, Germany, 2017. [Google Scholar]
- Chen, C.P.; Lakes, R.S. Analysis of high-loss viscoelastic composites. J. Mater. Sci. 1993, 28, 4299–4304. [Google Scholar] [CrossRef]
- Faisal, T.R.; Rey, A.D.; Pasini, D. A multiscale mechanical model for plant tissue stiffness. Polymers 2013, 5, 730–750. [Google Scholar] [CrossRef]
- Han, S.; Sung, M.; Jang, J.; Jeon, S.Y.; Yu, W.R. The effects of adhesion on the tensile strength of steel-polymer sandwich composites. Adv. Compos. Mater. 2021, 30, 443–461. [Google Scholar] [CrossRef]
- Fouda, N.; Mostafa, R.; Saker, A. Numerical study of stress shielding reduction at fractured bone using metallic and composite bone-plate models. Ain Shams Eng. J. 2019, 10, 481–488. [Google Scholar] [CrossRef]
- Raffa, M.L.; Nguyen, V.H.; Hernigou, P.; Flouzat-Lachaniette, C.H.; Haiat, G. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio. J. Orthop. Res. 2021, 39, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Arbaoui, J.; Schmitt, Y.; Royer, F.-X. Numerical simulation and experimental bending behaviour of multi-layer sandwich structures. J. Theor. Appl. Mech. 2014, 52, 431–442. [Google Scholar]
- Jackson, K. The Mechanics of Incremental Sheet Forming. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2008. [Google Scholar]
- Nayak, G.S. Titanium/PMMA Sandwich Materials for Biomedical Applications: Experiments and Simulation. Ph.D. Thesis, TU Clausthal, Clausthal-Zellerfeld, Germany, 2023. [Google Scholar] [CrossRef]
- Forcellese, A.; Simoncini, M. Mechanical properties and formability of metal–polymer–metal sandwich composites. Int. J. Adv. Manuf. Technol. 2020, 107, 3333–3349. [Google Scholar] [CrossRef]
- Ruokolainen, R.B.; Sigler, D.R. The effect of adhesion and tensile properties on the formability of laminated steels. J. Mater. Eng. Perform. 2008, 17, 330–339. [Google Scholar] [CrossRef]
- Liu, J.G.; Liu, W.; Wang, J.X. Influence of interfacial adhesion strength on formability of AA5052/polyethylene/AA5052 sandwich sheet. Trans. Nonferrous Met. Soc. China 2012, 22, s395–s401. [Google Scholar] [CrossRef]
- Mohr, D. On the role of shear strength in sandwich sheet forming. Int. J. Solids Struct. 2005, 42, 1491–1512. [Google Scholar] [CrossRef]
- Kalyanasundaram, S.; DharMalingam, S.; Venkatesan, S.; Sexton, A. Effect of process parameters during forming of self reinforced—PP based Fiber Metal Laminate. Compos. Struct 2013, 97, 332–337. [Google Scholar] [CrossRef]
- Weiss, M.; Dingle, M.E.; Rolfe, B.F.; Hodgson, P.D. The influence of temperature on the forming behavior of metal/polymer laminates in sheet metal forming. J. Eng. Mater. Technol. 2007, 129, 530–537. [Google Scholar] [CrossRef]
- Harhash, M.; Carradò, A.; Palkowski, H. Mechanical properties and forming behaviour of laminated steel/polymer sandwich systems with local inlays—Part 2: Stretching and deep drawing. Compos. Struct. 2017, 160, 1084–1094. [Google Scholar] [CrossRef]
- Wollmann, T.; Hahn, M.; Wiedemann, S.; Zeiser, A.; Jaschinski, J.; Modler, N.; Khalifa, N.B.; Meißen, F.; Paul, C. Thermoplastic fibre metal laminates: Stiffness properties and forming behaviour by means of deep drawing. Arch. Civ. Mech. Eng. 2018, 18, 442–450. [Google Scholar] [CrossRef]
- Harhash, M.; Gilbert, R.R.; Hartmann, S.; Palkowski, H. Experimental characterization, analytical and numerical investigations of metal/polymer/metal sandwich composites—Part 1: Deep drawing. Compos. Struct. 2018, 202, 1308–1321. [Google Scholar] [CrossRef]
- Rajabi, A.; Kadkhodayan, M.; Manoochehri, M.; Farjadfar, R. Deep-drawing of thermoplastic metal-composite structures: Experimental investigations, statistical analyses and finite element modelling. J. Mater. Process. Technol. 2015, 215, 159–170. [Google Scholar] [CrossRef]
- Lu, B.; Ou, H.; Shi, S.Q.; Long, H.; Chen, J. Titanium based cranial reconstruction using incremental sheet forming. Int. J. Mater. Form. 2016, 9, 361–370. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Krasowski, B.; Kubit, A.; Wydrzyński, D. Possibilities of application of incremental sheet-forming technique in aircraft industry. Sci. Lett. Rzesz. Univ. Technol.—Mech. 2018, 1, 87–100. [Google Scholar] [CrossRef]
- Göttmann, A.; Korinth, M.; Schäfer, V.; Araghi, B.T.; Bambach, M.; Hirt, G. Manufacturing of Individualized Cranial Implants Using Two Point Incremental Sheet Metal Forming. In Future Trends in Production Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 287–295. [Google Scholar] [CrossRef]
- Kumar, G.; Maji, K. Investigations on formability of tailor laminated sheets in single point incremental forming. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2022, 236, 1393–1405. [Google Scholar] [CrossRef]
- Jackson, K.P.; Allwood, J.M.; Landert, M. Incremental Forming of Sandwich Panels. Key Eng. Mater. 2007, 344, 591–598. [Google Scholar] [CrossRef]
- Harhash, M.; Palkowski, H. Incremental sheet forming of steel/polymer/steel sandwich composites. J. Mater. Res. Technol. 2021, 13, 417–430. [Google Scholar] [CrossRef]
- Esmailian, M.; Khalili, K. Two-Point Incremental Forming of Metal–Polymer Three-Layer Sheets. Iran. J. Sci. Technol.-Trans. Mech. Eng. 2021, 45, 181–196. [Google Scholar] [CrossRef]
- Fagerberg, L. Wrinkling of Sandwich Panels for Marine Applications. Ph.D. Dissertation, KTH University, Stockholm, Sweden, 2003. [Google Scholar]
- Johnson, W.S.; Masters, J.E.; O’Brien, T.K.; Zenkert, D.; Vikström, M. Shear Cracks in Foam Core Sandwich Panels: Nondestructive Testing and Damage Assessment. J. Compos. Technol. Res. 1992, 14, 95. [Google Scholar] [CrossRef]
- Pärnänen, T.; Kanerva, M.; Sarlin, E.; Saarela, O. Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture. Compos. Struct. 2015, 119, 777–786. [Google Scholar] [CrossRef]
- Daniel, I.M.; Gdoutos, E.E.; Wang, K.A.; Abot, J.L. Failure modes of composite sandwich beams. Int. J. Damage Mech. 2002, 11, 309–334. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nayak, G.S.; Palkowski, H.; Carradò, A. Precepts for Designing Sandwich Materials. J. Exp. Theor. Anal. 2024, 2, 31-45. https://doi.org/10.3390/jeta2010003
Nayak GS, Palkowski H, Carradò A. Precepts for Designing Sandwich Materials. Journal of Experimental and Theoretical Analyses. 2024; 2(1):31-45. https://doi.org/10.3390/jeta2010003
Chicago/Turabian StyleNayak, Gargi Shankar, Heinz Palkowski, and Adele Carradò. 2024. "Precepts for Designing Sandwich Materials" Journal of Experimental and Theoretical Analyses 2, no. 1: 31-45. https://doi.org/10.3390/jeta2010003
APA StyleNayak, G. S., Palkowski, H., & Carradò, A. (2024). Precepts for Designing Sandwich Materials. Journal of Experimental and Theoretical Analyses, 2(1), 31-45. https://doi.org/10.3390/jeta2010003