Temporal Variations of Air Quality in Cage-Free Experimental Pullet Houses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Housing and Management
2.3. Environmental Parameters
2.3.1. Temperature and Relative Humidity
2.3.2. Light Settings
2.3.3. Ventilation Rates
2.4. Litter Moisture Content
2.5. Particulate Matter Measurements
2.6. Ammonia Measurement
2.7. Statistical Data Analysis
3. Results and Discussion
3.1. Temperature and Relative Humidity
3.2. Litter Moisture Content Data
3.3. Particulate Matter Concentration
3.4. Ammonia Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mintus, C. More States in the United States to Switch to Cage-Free Eggs. Available online: https://www.thepoultrysite.com/news/2021/06/more-states-in-the-united-states-to-switch-to-cage-free-eggs (accessed on 1 April 2023).
- UEP Facts & Stats. United Egg Producers. 2021. Available online: https://unitedegg.com/facts-stats/ (accessed on 22 May 2022).
- Xin, H. Environmental Challenges and Opportunities with Cage-Free Hen Housing Systems. In Proceedings of the The XXV World’s Poultry Congress, Beijing, China, 5–9 September 2016; pp. 5–9. [Google Scholar]
- Gates, R.S.; Ramirez, B.; Li, G.; Xiong, Y.; Of, O.B. Evaluating Draft EPA Emissions Models for Laying Hen Facilities. Unitedegg 2022. Available online: https://unitedegg.com/wp-content/uploads/2022/06/EIC-Evaluation-of-Draft-EPA-Emissions-Models-for-Layers-06-09-2022.pdf (accessed on 1 April 2023).
- Greenwood, A. These 15 Restaurant Chains Are Switching To Cage-Free Eggs|HuffPost Impact. Available online: https://www.huffpost.com/entry/restaurants-cage-free-eggs_n_566f0497e4b011b83a6bfb02 (accessed on 1 April 2023).
- Chai, L.; Xin, H.; Zhao, Y.; Wang, T.; Soupir, M.; Liu, K. Mitigating Ammonia and PM Generation of Cage-Free Henhouse Litter with Solid Additive and Liquid Spray. Trans. ASABE 2018, 61, 287–294. [Google Scholar] [CrossRef]
- Chai, L.; Xin, H.; Wang, Y.; Oliveira, J.; Wang, K.; Zhao, Y. Mitigating Particulate Matter Generation in a Commercial Cage-Free Hen House. Trans. ASABE 2019, 62, 877–886. [Google Scholar] [CrossRef]
- Bist, R.B.; Chai, L. Advanced Strategies for Mitigating Particulate Matter Generations in Poultry Houses. Appl. Sci. 2022, 12, 11323. [Google Scholar] [CrossRef]
- Bist, R.B.; Subedi, S.; Chai, L.; Yang, X. Ammonia Emissions, Impacts, and Mitigation Strategies for Poultry Production: A Critical Review. J. Environ. Manag. 2023, 328, 116919. [Google Scholar] [CrossRef]
- Knight, R.M.; Tong, X.; Liu, Z.; Hong, S.; Zhao, L. Spatial and Seasonal Variations of PM Concentration and Size Distribution in Manure-Belt Poultry Layer Houses. Trans. ASABE 2019, 62, 415–427. [Google Scholar] [CrossRef]
- Lin, X.-J.; Cortus, E.; Zhang, R.; Jiang, S.; Heber, A. Ammonia, Hydrogen Sulfide, Carbon Dioxide and Particulate Matter Emissions from California High-Rise Layer Houses. Atmos. Environ. 2012, 46, 81–91. [Google Scholar] [CrossRef]
- Shen, D.; Li, C. Distribution of Particulate Matter and Ammonia in a Mechanically Ventilated Layer House. Anim. Environ. Welf. 2017, 10–16. [Google Scholar]
- Takai, H.; Pedersen, S.; Johnsen, J.O.; Metz, J.; Koerkamp, P.G.; Uenk, G.; Phillips, V.; Holden, M.; Sneath, R.; Short, J. Concentrations and Emissions of Airborne Dust in Livestock Buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 59–77. [Google Scholar] [CrossRef]
- Hayes, M.; Xin, H.; Li, H.; Shepherd, T.; Zhao, Y.; Stinn, J. Ammonia, Greenhouse Gas, and Particulate Matter Emissions of Aviary Layer Houses in the Midwestern US. Trans. ASABE 2013, 56, 1921–1932. [Google Scholar]
- Zhao, Y.; Xin, H.; Shepherd, T.; Hayes, M.; Stinn, J.; Li, H. Thermal Environment, Ammonia Concentrations, and Ammonia Emissions of Aviary Houses with White Laying Hens. Trans. ASABE 2013, 56, 1145–1156. [Google Scholar]
- Qi, R.; Manbeck, H.; Maghirang, R. Dust Net Generation Rate in a Poultry Layer House. Trans. ASAE 1992, 35, 1639–1645. [Google Scholar] [CrossRef]
- Cambra-López, M.; Hermosilla, T.; Lai, H.T.; Aarnink, A.J.A.; Ogink, N. Particulate Matter Emitted from Poultry and Pig Houses: Source Identification and Quantification. Trans. ASABE 2011, 54, 629–642. [Google Scholar] [CrossRef]
- Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-Term Exposure to Air Pollution and Incidence of Cardiovascular Events in Women. N. Engl. J. Med. 2007, 356, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Cambra-López, M.; Aarnink, A.J.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne Particulate Matter from Livestock Production Systems: A Review of an Air Pollution Problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Faísca, V.M.; Dias, H.; Clérigo, A.; Carolino, E.; Viegas, C. Occupational Exposure to Poultry Dust and Effects on the Respiratory System in Workers. J. Toxicol. Environ. Health Part A 2013, 76, 230–239. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. 2013. Available online: https://apps.who.int/iris/handle/10665/344854 (accessed on 7 April 2022).
- Michiels, A.; Piepers, S.; Ulens, T.; Van Ransbeeck, N.; Sacristán, R.D.P.; Sierens, A.; Haesebrouck, F.; Demeyer, P.; Maes, D. Impact of Particulate Matter and Ammonia on Average Daily Weight Gain, Mortality and Lung Lesions in Pigs. Prev. Vet. Med. 2015, 121, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Oyetunde, O.; Thomson, R.; Carlson, H. Aerosol Exposure of Ammonia, Dust and Escherichia Coli in Broiler Chickens. Can. Vet. J. 1978, 19, 187. [Google Scholar]
- Miles, D.; Branton, S.; Lott, B. Atmospheric Ammonia Is Detrimental to the Performance of Modern Commercial Broilers. Poult. Sci. 2004, 83, 1650–1654. [Google Scholar] [CrossRef]
- Wei, F.X.; Hu, X.F.; Sa, R.N.; Liu, F.; Li, S.; Sun, Q. Antioxidant Capacity and Meat Quality of Broilers Exposed to Different Ambient Humidity and Ammonia Concentrations. Genet. Mol. Res. 2014, 13, 3117–3127. [Google Scholar] [CrossRef]
- Piorkowska, K.; Żukowski, K.; Nowak, J.; Połtowicz, K.; Ropka-Molik, K.; Gurgul, A. Genome-wide RNA-Seq Analysis of Breast Muscles of Two Broiler Chicken Groups Differing in Shear Force. Anim. Genet. 2016, 47, 68–80. [Google Scholar] [CrossRef]
- Bonifacio, H.F.; Maghirang, R.G.; Trabue, S.L.; McConnell, L.L.; Prueger, J.H.; Bonifacio, E.R. TSP, PM10, and PM2.5 Emissions from a Beef Cattle Feedlot Using the Flux-Gradient Technique. Atmos. Environ. 2015, 101, 49–57. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Particulate Matter (PM) Basics. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 30 September 2022).
- Shepherd, T.A.; Zhao, Y.; Li, H.; Stinn, J.P.; Hayes, M.D.; Xin, H. Environmental Assessment of Three Egg Production Systems—Part II. Ammonia, Greenhouse Gas, and Particulate Matter Emissions. Poult. Sci. 2015, 94, 534–543. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2006; ISBN 92-890-2192-6. [Google Scholar]
- U.S. Environmental Protection Agency. National Ambient Air Quality Standards (NAAQS) for PM. Available online: https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm (accessed on 30 September 2022).
- Redwine, J.S.; Lacey, R.E.; Mukhtar, S.; Carey, J. Concentration and Emissions of Ammonia and Particulate Matter in Tunnel–Ventilated Broiler Houses under Summer Conditions in Texas. Trans. ASAE 2002, 45, 1101. [Google Scholar] [CrossRef]
- Vucemilo, M.; Matković, K.; Vinković, B.; Jakšić, S.; Granić, K.; Mas, N. The Effect of Animal Age on Air Pollutant Concentration in a Broiler House. Czech J. Anim. Sci 2007, 52, 170–174. [Google Scholar] [CrossRef]
- Hy-Line International. Hy-Line W-36 Commercial Layers Management Guide. ENG.Pdf. Available online: https://www.hyline.com/filesimages/Hy-Line-Products/Hy-Line-Product-PDFs/W-36/36%20COM%20ENG.pdf (accessed on 10 September 2022).
- Kristensen, H.H. The Effects of Light Intensity, Gradual Changes between Light and Dark and Definition of Darkness for the Behaviour and Welfare of Broiler Chickens, Laying Hens, Pullets and Turkeys. Sci. Rep. Nor. Sci. Comm. Food Saf. 2008, 1–44. Available online: https://vkm.no/download/18.1b70ef9115d3ac37645b2b5/1500030302470/7643446bd0.pdf (accessed on 21 April 2022).
- Mishra, A.; Koene, P.; Schouten, W.; Spruijt, B.; Van Beek, P.; Metz, J. Temporal and Sequential Structure of Behavior and Facility Usage of Laying Hens in an Enriched Environment. Poult. Sci. 2005, 84, 979–991. [Google Scholar] [CrossRef]
- Bist, R.B.; Subedi, S.; Chai, L.; Regmi, P.; Ritz, C.W.; Kim, W.K.; Yang, X. Effects of Perching on Poultry Welfare and Production: A Review. Poultry 2023, 2, 134–157. [Google Scholar] [CrossRef]
- Ritz, C.W.; Fairchild, B.D.; Lacy, M.P. Litter Quality and Broiler Performance. UGA Extension Bulletin, 1267. 2009. Available online: https://esploro.libs.uga.edu/esploro/outputs/report/Litter-quality-and-broiler-performance/9949316366502959 (accessed on 8 August 2022).
- Just, N.; Duchaine, C.; Singh, B. An Aerobiological Perspective of Dust in Cage-Housed and Floor-Housed Poultry Operations. J. Occup. Med. Toxicol. 2009, 4, 13. [Google Scholar] [CrossRef]
- Pedersen, S.; Nonnenmann, M.; Rautiainen, R.; Demmers, T.; Banhazi, T.; Lyngbye, M. Dust in Pig Buildings. J. Agric. Saf. Health 2000, 6, 261. [Google Scholar] [CrossRef]
- Yang, X.; Chai, L.; Bist, R.B.; Subedi, S.; Wu, Z. A Deep Learning Model for Detecting Cage-Free Hens on the Litter Floor. Animals 2022, 12, 1983. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.; Ni, J.-Q.; Diehl, C.A.; Kilic, I.; Heber, A.; Chen, Y.; Cortus, E.; Bogan, B.; Lim, T.; Ramirez-Dorronsoro, J.-C. Ventilation Rates in Large Commercial Layer Hen Houses with Two-Year Continuous Monitoring. Br. Poult. Sci. 2012, 53, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Miles, D.; Rowe, D.; Cathcart, T. High Litter Moisture Content Suppresses Litter Ammonia Volatilization. Poult. Sci. 2011, 90, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Koerkamp, P.G. Ammonia Emission from Aviary Housing Systems for Laying Hens: Inventory, Characteristics and Solutions; Wageningen University and Research: Wageningen, The Netherlands, 1998; ISBN 9798515234881. [Google Scholar]
- Liu, Z.; Wang, L.; Beasley, D.; Oviedo, E. Effect of Moisture Content on Ammonia Emissions from Broiler Litter: A Laboratory Study. J. Atmos. Chem. 2007, 58, 41–53. [Google Scholar] [CrossRef]
- Ritz, C.; Mitchell, B.; Fairchild, B.; Czarick III, M.; Worley, J. Improving In-House Air Quality in Broiler Production Facilities Using an Electrostatic Space Charge System. J. Appl. Poult. Res. 2006, 15, 333–340. [Google Scholar] [CrossRef]
- Melse, R.; Ogink, N.; Bosma, A. Multi-Pollutant Scrubbers for Removal of Ammonia, Odor, and Particulate Matter from Animal House Exhaust Air. In Exploring the Advantages, Limitations, and Economics of Mitigation Technologies; ISU College of Agriculture and Life Science University Extension: Ames, IA, USA, 2008. [Google Scholar]
- Zhao, Y.; Aarnink, A.; De Jong, M.; Ogink, N.; Koerkamp, P.G. Effectiveness of Multi-Stage Scrubbers in Reducing Emissions of Air Pollutants from Pig Houses. Trans. ASABE 2011, 54, 285–293. [Google Scholar] [CrossRef]
- Gustafsson, G.; Von Wachenfelt, E. Reducing Airborne Dust in a Loose-Housing System for Laying Hens. J. Agric. Sci. Technol. A 2012, 2, 350. [Google Scholar]
- Chai, L.; Zhao, Y.; Xin, H.; Wang, T.; Atilgan, A.; Soupir, M.; Liu, K. Reduction of Particulate Matter and Ammonia by Spraying Acidic Electrolyzed Water onto Litter of Aviary Hen Houses: A Lab-Scale Study. Trans. ASABE 2017, 60, 497–506. [Google Scholar]
Weeks * | PM1 (mg/m3) | PM2.5 (mg/m3) | PM4 (mg/m3) | PM10 (mg/m3) | TSP (mg/m3) |
---|---|---|---|---|---|
1 | 0.022 ± 0.003 | 0.023 ± 0.003 | 0.024 ± 0.003 | 0.031 ± 0.004 | 0.058 ± 0.013 |
2 | 0.032 ± 0.013 | 0.033 ± 0.013 | 0.035 ± 0.013 | 0.052 ± 0.022 | 0.123 ± 0.064 |
3 | 0.047 ± 0.009 | 0.048 ± 0.009 | 0.050 ± 0.010 | 0.075 ± 0.015 | 0.184 ± 0.052 |
4 | 0.074 ± 0.027 | 0.075 ± 0.027 | 0.079 ± 0.028 | 0.122 ± 0.049 | 0.316 ± 0.155 |
5 | 0.113 ± 0.091 | 0.115 ± 0.092 | 0.123 ± 0.095 | 0.187 ± 0.135 | 0.469 ± 0.349 |
6 | 0.171 ± 0.114 | 0.174 ± 0.114 | 0.182 ± 0.118 | 0.246 ± 0.143 | 0.631 ± 0.426 |
7 | 0.112 ± 0.063 | 0.114 ± 0.063 | 0.120 ± 0.064 | 0.182 ± 0.093 | 0.497 ± 0.297 |
8 | 0.275 ± 0.221 | 0.279 ± 0.222 | 0.293 ± 0.228 | 0.419 ± 0.300 | 1.147 ± 0.806 |
9 | 0.432 ± 0.255 | 0.439 ± 0.256 | 0.461 ± 0.261 | 0.646 ± 0.338 | 1.733 ± 0.913 |
10 | 0.607 ± 0.338 | 0.619 ± 0.343 | 0.649 ± 0.351 | 0.924 ± 0.465 | 2.412 ± 1.304 |
11 | 0.631 ± 0.364 | 0.641 ± 0.366 | 0.673 ± 0.375 | 0.969 ± 0.513 | 2.573 ± 1.461 |
12 | 0.852 ± 0.512 | 0.867 ± 0.515 | 0.916 ± 0.530 | 1.395 ± 0.775 | 3.602 ± 2.245 |
13 | 0.897 ± 0.484 | 0.914 ± 0.488 | 0.966 ± 0.505 | 1.480 ± 0.759 | 3.842 ± 2.169 |
14 | 0.912 ± 0.550 | 0.929 ± 0.555 | 0.983 ± 0.573 | 1.528 ± 0.867 | 3.950 ± 2.494 |
15 | 0.938 ± 0.441 | 0.955 ± 0.444 | 1.001 ± 0.456 | 1.856 ± 0.681 | 4.345 ± 1.901 |
16 | 1.394 ± 0.573 | 1.436 ± 0.579 | 1.587 ± 0.620 | 2.723 ± 1.094 | 6.387 ± 2.963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bist, R.B.; Yang, X.; Subedi, S.; Sharma, M.K.; Singh, A.K.; Ritz, C.W.; Kim, W.K.; Chai, L. Temporal Variations of Air Quality in Cage-Free Experimental Pullet Houses. Poultry 2023, 2, 320-333. https://doi.org/10.3390/poultry2020024
Bist RB, Yang X, Subedi S, Sharma MK, Singh AK, Ritz CW, Kim WK, Chai L. Temporal Variations of Air Quality in Cage-Free Experimental Pullet Houses. Poultry. 2023; 2(2):320-333. https://doi.org/10.3390/poultry2020024
Chicago/Turabian StyleBist, Ramesh Bahadur, Xiao Yang, Sachin Subedi, Milan Kumar Sharma, Amit Kumar Singh, Casey W. Ritz, Woo Kyun Kim, and Lilong Chai. 2023. "Temporal Variations of Air Quality in Cage-Free Experimental Pullet Houses" Poultry 2, no. 2: 320-333. https://doi.org/10.3390/poultry2020024
APA StyleBist, R. B., Yang, X., Subedi, S., Sharma, M. K., Singh, A. K., Ritz, C. W., Kim, W. K., & Chai, L. (2023). Temporal Variations of Air Quality in Cage-Free Experimental Pullet Houses. Poultry, 2(2), 320-333. https://doi.org/10.3390/poultry2020024