Mitigating the Adverse Effects of Lead and Cadmium Heavy Metals-Induced Oxidative Stress by Phytogenic Compounds in Poultry
Abstract
:1. Introduction
2. Oxidative Stress and Antioxidative Systems in Poultry
3. Heavy Metals and Oxidative Stress in Poultry
3.1. Pb
3.2. Cd and As
3.3. Mitigation of Oxidative Stress in Poultry
4. Pb and Phytogenic Plants
4.1. Allium sativum (Garlic)
4.2. Yucca schidigera
4.3. Coriandrum sativum (Coriander)
4.4. Garcinia Kola Heckel (Bitter cola)
5. Cd and Phytogenic Plants
5.1. Garlic (Allium sativum L.)
5.2. Milk Thistle (Silybum marianum)
5.3. Ginger (Zingiber officinale)
5.4. Winter Cherry (Withania somnifera)
5.5. Tulsi Leaf (Ocimum sanctum)
5.6. Indian Gooseberry (Emblica officinalis)
5.7. Rosemary (Rosmarinus officinalis)
5.8. Extract of Korean Ginseng (Panex ginseng)
5.9. Other Different Types of Herbal Plants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bacou, E.; Walk, C.; Rider, S.; Litta, G.; Perez-Calvo, E. Dietary oxidative distress: A review of nutritional challenges as models for poultry, swine and fish. Antioxidants 2021, 10, 525. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Oskoueian, E.; Le, H.H.; Shakeri, M. Strategies to combat heat stress in broiler chickens: Unveiling the roles of selenium, vitamin E and vitamin C. Vet. Sci. 2020, 7, 71. [Google Scholar] [CrossRef]
- Shakeri, M.; Le, H.H. Deleterious Effects of Heat Stress on Poultry Production: Unveiling the Benefits of Betaine and Polyphenols. Poultry 2022, 1, 147–156. [Google Scholar] [CrossRef]
- Mishra, B.; Jha, R. Oxidative stress in the poultry gut: Potential challenges and interventions. Front. Vet. Sci. 2019, 6, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Zhao, W.; Le, H.H.; McQuade, R.; Furness, J.B.; Dunshea, F.R. Dietary betaine improves intestinal barrier function and ameliorates the impact of heat stress in multiple vital organs as measured by evans blue dye in broiler chickens. Animals 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Khafaga, A.F.; El-Hack, A.; Mohamed, E.; Taha, A.E.; Elnesr, S.S.; Alagawany, M. The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: A review. Environ. Sci. pollut. Res. 2019, 26, 4588–4604. [Google Scholar] [CrossRef]
- Nai, G.A.; Marin, F.F.; Queiroz, L.M.M.; Estrella, M.P.S. Respiratory tract cadmium-induced injuries—poisoning via intake and water pH could influence their genesis? An experimental study in rats. Comp. Clin. Path. 2017, 26, 997–1002. [Google Scholar] [CrossRef]
- Schaefer, H.R.; Dennis, S.; Fitzpatrick, S. Cadmium: Mitigation strategies to reduce dietary exposure. J. Food Sci. 2020, 85, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, N.C.; Hatzidaki, E.G.; Belivanis, S.; Tzanakakis, G.N.; Tsatsakis, A.M. Lead toxicity update. A brief review. Med. Sci. Monit. 2005, 11, RA329. [Google Scholar] [PubMed]
- Korish, M.A.; Attia, Y.A. Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals 2020, 10, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloš, M.Ž.; Jakšić, S.; Pelić, D.L. The role, importance and toxicity of arsenic in poultry nutrition. Worlds Poult. Sci. J. 2019, 75, 375–386. [Google Scholar] [CrossRef]
- Cadet, J.; Davies, K.J. Oxidative DNA damage & repair: An introduction. Free Radic. Biol. Med. 2017, 107, 2–12. [Google Scholar]
- Rehman, Z.U.; Meng, C.; Sun, Y.; Safdar, A.; Pasha, R.H.; Munir, M.; Ding, C. Oxidative stress in poultry: Lessons from the viral infections. Oxid. Med. Cell. Longev. 2018, 2018, 5123147. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.R.; Alagawany, M.; Abd El-Hack, M.E.; El-Sayed, S.A.; Ahmed, S.Y.; Samak, D.H. Yucca schidigera extract modulates the lead-induced oxidative damage, nephropathy and altered inflammatory response and glucose homeostasis in Japanese quails. Ecotoxicol. Environ. Saf. 2018, 156, 311–321. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottje, W.; Wang, S.; Kelly, F.J.; Dunster, C.; Williams, A.; Mudway, I. Antioxidant defenses in lung lining fluid of broilers: Impact of poor ventilation conditions. Poult. Sci. 1998, 77, 516–522. [Google Scholar] [CrossRef]
- Xiong, Y.; Yin, Q.; Li, J.; He, S. Oxidative stress and endoplasmic reticulum stress are involved in the protective effect of alpha lipoic acid against heat damage in chicken testes. Animals 2020, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef] [PubMed]
- Okoye, P.; Ajiwe, V.; Okeke, O.; Ujah, I.; Asalu, U.; Okeke, D. Estimation of heavy metal levels in the muscle, gizzard, liver and kidney of broiler, layer and local (cockerel) chickens raised within Awka metropolis and its environs, Anambra state, south eastern Nigeria. J. Environ. Prot. 2015, 6, 609. [Google Scholar] [CrossRef] [Green Version]
- Bakalli, R.; Pesti, G.; Ragland, W. The magnitude of lead toxicity in broiler chickens. Vet. Hum. Toxicol. 1995, 37, 15–19. [Google Scholar]
- Dobrzański, Z.; Gorecki, H.; Chojnacka, K.; Gorecka, H.; Synowiec, M. Effect of dietary humic preparations on the content of trace elements in hens’ eggs. Am. J. Agric. Biol. Sci. 2007, 2, 234–240. [Google Scholar]
- Abduljaleel, S.A.; Shuhaimi-Othman, M. Metals concentrations in eggs of domestic avian and estimation of health risk from eggs consumption. J. Biol. Sci. 2011, 11, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Hunton, P. Research on eggshell structure and quality: An historical overview. Braz. J. Poult. Sci. 2005, 7, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Dauwe, T.; Janssens, E.; Bervoets, L.; Blust, R.; Eens, M. Heavy-metal concentrations in female laying great tits (Parus major) and their clutches. Arch. Environ. Contam. Toxicol. 2005, 49, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, R.; Faseleh Jahromi, M.; Liang, J.B.; Soleimani Farjam, A.; Shokryazdan, P.; Idrus, Z. Effect of dietary lead on intestinal nutrient transporters mRNA expression in broiler chickens. BioMed Res. Int. 2015, 2015, 149745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flora, S.; Mittal, M.; Mehta, A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J. Med. Res. 2008, 128, 501. [Google Scholar] [PubMed]
- Ye, F.; Li, X.; Li, F.; Li, J.; Chang, W.; Yuan, J.; Chen, J. Cyclosporin A protects against Lead neurotoxicity through inhibiting mitochondrial permeability transition pore opening in nerve cells. Neurotoxicology 2016, 57, 203–213. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J.-Y.; Dong, J.-X.; Xiao, Q.; Zhao, J.; Jiang, F.-L. Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol. Res. 2017, 6, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Gurer-Orhan, H.; Sabır, H.U.; Özgüneş, H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology 2004, 195, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, H.; Yang, Z.; Liu, Z. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J. Pharmacol. 2013, 45, 395. [Google Scholar]
- Liu, C.-M.; Ma, J.-Q.; Sun, Y.-Z. Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol. Appl. Pharmacol. 2012, 258, 330–342. [Google Scholar] [CrossRef]
- Neal, A.P.; Guilarte, T.R. Molecular neurobiology of lead (Pb2+): Effects on synaptic function. Mol. Neurobiol. 2010, 42, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Li, H.; Bai, L.; Wang, L.; Zou, X. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations. Poult. Sci. 2020, 99, 3215–3228. [Google Scholar] [CrossRef] [PubMed]
- Branca, J.J.V.; Morucci, G.; Pacini, A. Cadmium-induced neurotoxicity: Still much ado. Neural Regen. Res. 2018, 13, 1879. [Google Scholar]
- Li, Y.-x.; Xiong, X.; Chun-ye, L.; Feng-song, Z.; Wei, L.; Wei, H. Cadmium in animal production and its potential hazard on Beijing and Fuxin farmlands. J. Hazard. Mater. 2010, 177, 475–480. [Google Scholar] [CrossRef]
- Fan, R.; Hu, P.-c.; Wang, Y.; Lin, H.-y.; Su, K.; Feng, X.-s.; Wei, L.; Yang, F. Betulinic acid protects mice from cadmium chloride-induced toxicity by inhibiting cadmium-induced apoptosis in kidney and liver. Toxicol. Lett. 2018, 299, 56–66. [Google Scholar] [CrossRef]
- Akyolcu, M.; Ozcelik, D.; Dursun, S.; Toplan, S.; Kahraman, R. Accumulation of cadmium in tissue and its effect on live performance. In Proceedings of the Journal de Physique IV (Proceedings), Porto, Portugal, 8–10 September 2003; pp. 33–36. [Google Scholar]
- Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 1995, 18, 321–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrick, L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 2003, 8, 106–128. [Google Scholar]
- Castagnetto, J.M.; Hennessy, S.W.; Roberts, V.A.; Getzoff, E.D.; Tainer, J.A.; Pique, M.E. MDB: The metalloprotein database and browser at the Scripps Research Institute. Nucleic Acids Res. 2002, 30, 379–382. [Google Scholar] [CrossRef]
- Kern, M.; Wisniewski, M.; Cabell, L.; Audesirk, G. Inorganic lead and calcium interact positively in activation of calmodulin. Neurotoxicology 2000, 21, 353–363. [Google Scholar] [PubMed]
- Sun, X.; Tian, X.; Tomsig, J.L.; Suszkiw, J.B. Analysis of differential effects of Pb2+ on protein kinase C isozymes. Toxicol. Appl. Pharmacol. 1999, 156, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, C. Role of calcium channels in heavy metal toxicity. Int. Sch. Res. Not. 2013, 2013, 184360. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Dai, S.; Liu, Y.; Liu, H.; Zhang, Y.; Ji, X.; Yu, F.; Zhou, Y.; Chen, L.; Tse, W.K.F. Activation of Ca2+-sensing receptor as a protective pathway to reduce Cadmium-induced cytotoxicity in renal proximal tubular cells. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Ravindran, G.; Krishnamurthy, V. A brief review on the effect of cadmium toxicity: From cellular to organ level. Int. J. Biotechnol. Res. 2013, 3, 17–36. [Google Scholar]
- Liu, J.; Qu, W.; Kadiiska, M.B. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 2009, 238, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flora, S.J. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 2011, 51, 257–281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; He, Y.; Li, S.; Sun, X.; Wang, Y.; Shao, Y.; Hou, Z.; Xing, M. Subchronic arsenism-induced oxidative stress and inflammation contribute to apoptosis through mitochondrial and death receptor dependent pathways in chicken immune organs. Oncotarget 2017, 8, 40327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef] [PubMed]
- McGill, M.R.; Du, K.; Weemhoff, J.L.; Jaeschke, H. Critical review of resveratrol in xenobiotic-induced hepatotoxicity. Food Chem. Toxicol. 2015, 86, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice-Evans, C. Flavonoid antioxidants. Curr. Med. Chem. 2001, 8, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, X.; Jiao, H.; Zhao, B. Tea catechins protect against lead-induced cytotoxicity, lipid peroxidation, and membrane fluidity in HepG2 cells. Toxicol. Sci. 2002, 69, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Winiarska-Mieczan, A. Protective effect of tea against lead and cadmium-induced oxidative stress—A review. Biometals 2018, 31, 909–926. [Google Scholar] [CrossRef] [Green Version]
- Mężyńska, M.; Brzóska, M.M.; Rogalska, J.; Piłat-Marcinkiewicz, B. Extract from Aronia melanocarpa L. berries prevents cadmium-induced oxidative stress in the liver: A study in a rat model of low-level and moderate lifetime human exposure to this toxic metal. Nutrients 2018, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Zhong, R.; Chen, L.; Feng, C.; Sun, H.; Zhou, D. Effects of astaxanthin supplementation on the sperm quality and antioxidant capacity of ram semen during liquid storage. Small Rumin. Res. 2015, 130, 178–182. [Google Scholar] [CrossRef]
- Najafi, D.; Taheri, R.A.; Najafi, A.; Shamsollahi, M.; Alvarez-Rodriguez, M. Effect of astaxanthin nanoparticles in protecting the post-thawing quality of rooster sperm challenged by cadmium administration. Poult. Sci. 2020, 99, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Miki, W. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 1991, 63, 141–146. [Google Scholar] [CrossRef]
- Rubiolo, J.; Vega, F. Resveratrol protects primary rat hepatocytes against necrosis induced by reactive oxygen species. Biomed. Pharmacother. 2008, 62, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; El-Hack, A.; Mohamed, E.; El-Kholy, M.S. Productive performance, egg quality, blood constituents, immune functions, and antioxidant parameters in laying hens fed diets with different levels of Yucca schidigera extract. Environ. Sci. pollut. Res. 2016, 23, 6774–6782. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthi, S.; Jessop, C.E.; Bulleid, N.J. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 2006, 7, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhao, F.; Li, Z.; Jin, X.; Chen, X.; Geng, Z.; Hu, H.; Zhang, C. Effects of resveratrol on growth performance, intestinal development, and antioxidant status of broilers under heat stress. Animals 2021, 11, 1427. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Wachowicz, B.; Stochmal, A.; Oleszek, W. Inhibition of oxidative stress in blood platelets by different phenolics from Yucca schidigera Roezl. bark. Nutrition 2003, 19, 633–640. [Google Scholar] [CrossRef]
- Nurdiana, S.; Goh, Y.M.; Ahmad, H.; Dom, S.M.; Syimal’ain Azmi, N.; Noor Mohamad Zin, N.S.; Ebrahimi, M. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC Complement. Altern. Med. 2017, 17, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Bhattacharya, S. Medicinal plants and natural products in amelioration of arsenic toxicity: A short review. Pharm. Biol. 2017, 55, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Mehrandish, R.; Rahimian, A.; Shahriary, A. Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. J. Herbmed Pharmacol. 2019, 8, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Chaudhuri, K. Amelioration of sodium arsenite induced toxicity by diallyl disulfide, a bioactive component of garlic: The involvement of antioxidants and the chelate effect. RSC Adv. 2014, 4, 20964–20973. [Google Scholar] [CrossRef]
- Adegboyega, A.; Odunola, O. The modulatory effects of aqueous extracts of Viscum album and garlic on sodium arsenite induced toxicity in Wistar albino rat. J. Chem. Pharm. Res. 2012, 4, 4698–4701. [Google Scholar]
- Sharmila Banu, G.; Kumar, G.; Murugesan, A. Effect of ethanolic leaf extract of Trianthema portulacastrum L. on aflatoxin induced hepatic damage in rats. Indian J. Clin. Biochem. 2009, 24, 414–418. [Google Scholar] [CrossRef] [Green Version]
- Bjørklund, G.; Rahaman, M.S.; Shanaida, M.; Lysiuk, R.; Oliynyk, P.; Lenchyk, L.; Chirumbolo, S.; Chasapis, C.T.; Peana, M. Natural dietary compounds in the treatment of arsenic toxicity. Molecules 2022, 27, 4871. [Google Scholar] [CrossRef] [PubMed]
- Arreola, R.; Quintero-Fabián, S.; López-Roa, R.I.; Flores-Gutiérrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res. 2015, 2015, 401630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, D.; Ismail, T.A.; Khalifa, E.; Abd El-Kader, S.A.; Mohamed, D.I.; Mohamed, D.T.; Shahin, S.E.; Abd El-Hamid, M.I. Supplementing Garlic Nanohydrogel Optimized Growth, Gastrointestinal Integrity and Economics and Ameliorated Necrotic Enteritis in Broiler Chickens Using a Clostridium perfringens Challenge Model. Animals 2021, 11, 2027. [Google Scholar] [CrossRef]
- Morales-González, J.A.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Valadez-Vega, M.d.C.; Álvarez-González, I.; Morales-González, Á.; Madrigal-Santillán, E. Garlic (Allium sativum L.): A brief review of its antigenotoxic effects. Foods 2019, 8, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obioha, U.E.; Suru, S.M.; Ola-Mudathir, K.F.; Faremi, T.Y. Hepatoprotective potentials of onion and garlic extracts on cadmium-induced oxidative damage in rats. Biol. Trace Elem. Res. 2009, 129, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Ro, J.-H.; Liu, C.-C.; Lin, M.-C. Resveratrol mitigates cerebral ischemic injury by altering levels of trace elements, toxic metal, lipid peroxidation, and antioxidant activity. Biol. Trace Elem. Res. 2021, 199, 3718–3727. [Google Scholar] [CrossRef] [PubMed]
- Piacente, S.; Pizza, C.; Oleszek, W. Saponins and phenolics of Yucca schidigera Roezl: Chemistry and bioactivity. Phytochem. Rev. 2005, 4, 177–190. [Google Scholar] [CrossRef]
- Saeed, M.; Arain, M.A.; Naveed, M.; Alagawany, M.; El-Hack, A.; Ezzat, M.; Bhutto, Z.A.; Bednarczyk, M.; Kakar, M.U.; Abdel-Latif, M. Yucca schidigera can mitigate ammonia emissions from manure and promote poultry health and production. Environ. Sci. pollut. Res. 2018, 25, 35027–35033. [Google Scholar] [CrossRef]
- Taha, H.S.; Abdelnour, S.A.; Alagawany, M. Growth performance, biochemical, cytological and molecular aspects of rabbits exposed to lead toxicity. J. Anim. Physiol. Anim. Nutr. 2019, 103, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, H.; Pour, B.E.; Rizwan, M. Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environ. Pollut. 2020, 266, 114982. [Google Scholar] [CrossRef]
- Velaga, M.K.; Yallapragada, P.R.; Williams, D.; Rajanna, S.; Bettaiya, R. Hydroalcoholic seed extract of Coriandrum sativum (Coriander) alleviates lead-induced oxidative stress in different regions of rat brain. Biol. Trace Elem. Res. 2014, 159, 351–363. [Google Scholar] [CrossRef]
- Nishio, R.; Tamano, H.; Morioka, H.; Takeuchi, A.; Takeda, A. Intake of heated leaf extract of Coriandrum sativum contributes to resistance to oxidative stress via decreases in heavy metal concentrations in the kidney. Plant Foods Hum. Nutr. 2019, 74, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Daramola, B.; Adegoke, G. Bitter kola (Garcinia kola) seeds and health management potential. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 213–220. [Google Scholar]
- Osemwegie, O.O.; Nwonuma, C.O.; Oluyori, A.P.; Abraham, P.O.; Akanbi, A.A.; Opaleke, D.O.; Alejolowo, O.O. In vitro antimicrobial and in vivo lead acetate poison abatement study of Garcinia kola Heckel. J. Taibah Univ. Sci. 2017, 11, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Tandon, S.; Singh, S.; Prasad, S. Influence of garlic on the disposition and toxicity of lead and cadmium in the rat. Pharm. Biol. 2001, 39, 450–454. [Google Scholar] [CrossRef]
- Mohamed, M.; Mohamed, A.H. Protective role of garlic against cadmium toxicity in rats: Clinicopathological and histopathological studies. Egypt. J. Comp. Path. Clin. Path 2009, 22, 114–140. [Google Scholar]
- Eteng, M.U.; Onwuka, F.C.; Akpanyung, E.O.; Osuchukwu, N.C.; Bassey, S.C.; Nwankpa, P. Reversal of cadmium induced toxicity following dietary supplementation with garlic, ginger and cabbage in male Wistar rats. J. Nat. Prod. Plant. Res. 2012, 2, 169–174. [Google Scholar]
- Andleeb, S.; Shaukat, S.; Ara, C. Protection against cadmium-induced abnormalities and hepatotoxicity in ovo by Allium sativum. Punjab Univ. J. Zool. 2018, 33, 34–41. [Google Scholar] [CrossRef]
- Borges, F.F.V.; e Silva, C.R.; Goes, W.M.; Godoy, F.R.; Franco, F.C.; Véras, J.H.; Bailão, E.F.L.C.; e Silva, D.d.M.; Cardoso, C.G.; da Cruz, A.D. Protective effects of silymarin and silibinin against DNA damage in human blood cells. BioMed Res. Int. 2018, 2018, 6056948. [Google Scholar] [CrossRef] [Green Version]
- Egwurugwu, J.; Ufearo, C.; Abanobi, O.; Nwokocha, C.; Duruibe, J.; Adeleye, G.; Ebunlomo, A.; Odetola, A.; Onwufuji, O. Effects of ginger (Zingiber officinale) on cadmium toxicity. Afr. J. Biotechnol. 2007, 6. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Singh Sangwan, N. Amelioration of cadmium stress in Withania somnifera by ROS management: Active participation of primary and secondary metabolism. Plant Growth Regul. 2019, 87, 403–412. [Google Scholar] [CrossRef]
- Yan, L.-J.; Allen, D.C. Cadmium-induced kidney injury: Oxidative damage as a unifying mechanism. Biomolecules 2021, 11, 1575. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, B.; Mrigesh, M.; Chauhan, P.; Rastogi, S.K. Dietary supplementation with Withania somnifera root powder ameliorates experimentally induced Infectious Bursal Disease in chicken. Trop. Anim. Health Prod. 2020, 52, 1195–1206. [Google Scholar] [CrossRef]
- Yadav, S.N.; Batra, M. Effect of Withania Somnífera Root Powder Administration on Immune Responses in Cadmium-Treated Chickens. Indian J. 2017, 19, 36–41. [Google Scholar] [CrossRef]
- Ramesh, B.; Satakopan, V. Antioxidant activities of hydroalcoholic extract of Ocimum sanctum against cadmium induced toxicity in rats. Indian J. Clin. Biochem. 2010, 25, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Lee, B.M.; Kim, H.S. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. J. Toxicol. Environ. Health Part B 2021, 24, 95–118. [Google Scholar] [CrossRef] [PubMed]
- Prabu, M.; Selvarajan, N.; Hemalatha, S.; Rameshkumar, T. Hepatoprotective effect of Andrographis paniculata against cadmium induced toxicity in male Wistar rats. Toxicol. Int. 2008, 15, 21. [Google Scholar]
- Ivanova, J.; Gluhcheva, Y.; Tsanova, D.; Piskova, A.; Djaleva, R.; Mokresheva, S.; Kamenova, D.; Mitewa, M. On the effect of chelating agents and antioxidants on cadmium-induced organ toxicity. An overview. Eur. J. Chem. 2013, 4, 74–84. [Google Scholar] [CrossRef]
- Bharavi, K.; Reddy, A.G.; Rao, G.; Kumar, P.R.; Kumar, D.S.; Prasadini, P.P. Prevention of cadmium bioaccumulation by herbal adaptogens. Indian J. Pharmacol. 2011, 43, 45. [Google Scholar] [CrossRef] [Green Version]
- Karadeniz, A.; Cemek, M.; Simsek, N. The effects of Panax ginseng and Spirulina platensis on hepatotoxicity induced by cadmium in rats. Ecotoxicol. Environ. Saf. 2009, 72, 231–235. [Google Scholar] [CrossRef]
- Swapna, G.; Reddy, A.G.; Reddy, A.R. Cadmium-induced oxidative stress and evaluation of Embilica officinalis and stressroak in broilers. Toxicol. Int. 2010, 17, 49. [Google Scholar] [PubMed] [Green Version]
- Mehrzadi, S.; Mehrabani, M.; Malayeri, A.R.; Bakhshayesh, M.; Kalantari, H.; Goudarzi, M. Ellagic acid as a potential antioxidant, alleviates methotrexate-induced hepatotoxicity in male rats. Acta Chir. Belg. 2019, 119, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Promy, V.; Mai, E.; Sherifa, H.; Zainab, K.; Maha, A.-A.; Maha, D.S.O.; Eibtisam, A.; Muzammil, I.S.; Nada, M.M. Ameliorative effects of Embilica officinalis and Rosmarinus officinalis on cadmium-induced oxidative stress in Wistar rats. J. Med. Plant Res. 2013, 7, 805–818. [Google Scholar]
- Park, S.J.; Lee, J.R.; Jo, M.J.; Park, S.M.; Ku, S.K.; Kim, S.C. Protective effects of Korean red ginseng extract on cadmium-induced hepatic toxicity in rats. J. Ginseng Res. 2013, 37, 37. [Google Scholar] [CrossRef] [Green Version]
- SHAKERI, M.; SHAKERI, M.; OMIDI, A. Effect of Garlic Supplementation to Diet on Performance and Intestinal Morphology of Broiler Chickens under High Stocking Density. İstanbul Üniversitesi Vet. Fakültesi Derg. 2014, 41, 212–217. [Google Scholar]
- Hossain, M.; Akanda, M.; Mostofa, M.; Awal, M. Ameliorative effects of dried garlic powder (Allium sativum) on hematological parameters against lead (Pb) intoxication in broiler chickens. Pharmacologia 2014, 5, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Flora, S.J. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid. Med. Cell. Longev. 2009, 2, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Tang, E.L.; Rajarajeswaran, J.; Fung, S.Y.; Kanthimathi, M. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement. Altern. Med. 2013, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Kansal, L.; Sharma, A. Prophylactic efficacy of Coriandrum sativum (Coriander) on testis of lead-exposed mice. Biol. Trace Elem. Res. 2010, 136, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Téllez-López, M.Á.; Mora-Tovar, G.; Ceniceros-Méndez, I.M.; García-Lujan, C.; Puente-Valenzuela, C.O.; del Carmen Vega-Menchaca, M.; Serrano-Gallardo, L.B.; Garza, R.G.; Morán-Martínez, J. Evaluation of the chelating effect of methanolic extract of Coriandrum sativum and its fractions on wistar rats poisoned with lead acetate. J. Tradit. Complement. Altern. Med. 2017, 14, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Jiao, L.; Xiao, K.; Luan, Z.; Hu, C.; Shi, B.; Zhan, X. Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. Anim. Feed Sci. Technol. 2013, 185, 175–181. [Google Scholar] [CrossRef]
- Mężyńska, M.; Brzóska, M.M. Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. J. Appl. Toxicol. 2019, 39, 117–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, K.; Watanabe, S. Large-billed crows (Corvus macrorhynchos) have retrospective but not prospective metamemory. Anim. Cogn. 2012, 15, 27–35. [Google Scholar] [CrossRef]
- Shukla, R.; Kumar, M. Role of Panax ginseng as an antioxidant after cadmium-induced hepatic injuries. Food Chem. Toxicol. 2009, 47, 769–773. [Google Scholar] [CrossRef] [PubMed]
Plants | Name | Main Ingredients | Mechanisms of Action | Heavy Metal | References |
---|---|---|---|---|---|
Allium sativum | Garlic | • Water-soluble sulfur compounds | • Antioxidant | Pb | [75,76] |
• S-allyl cysteine | • Antiallergic | ||||
• Lipid soluble compounds | • Immunostimulatory | ||||
• Enzymes and volatile oils | • The impact of specific enzyme inhibitors • Antioxidant activities • Chelating capability • Preventing intestinal absorption of Pb, by its amino acids containing sulfur groups such as S-allyl mercaptocysteine and S-allyl cysteine | ||||
• Reduce mitochondrial damage | [77] | ||||
• Lessen apoptosis in tissue culture models | [78] | ||||
Yucca schidigera | Yucca | • Resveratrol | • Hypocholesterolemic | Pb | [79] |
• Saponins | • Hypoglycemic | [63] | |||
• Several enzymes | •Antioxidant | [63] | |||
• Antioxidants agents | • Immunostimulatory | [16] | |||
• Preserve ammonia emission and reduce its level in poultry farms | [80] | ||||
• Decrease blood urea contents | |||||
• Significant capacity for absorbing volatile chemicals that can be harmful, such as hydrogen sulfide and ammonia | Pb | [81] | |||
• Potential modulation of Pb-induced inhibitory effects on the reproductive and productive characteristics of Japanese quails | [16] | ||||
• Pb-induced histomorphometry and immunohistochemical alterations that are more pronounced | [82] | ||||
• Nitric oxide (NO), vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-), and transforming growth factor-1 (TGF-1) levels that are declining | [16] | ||||
• Helps co-exposed quails’ glucose homeostasis | [16] | ||||
Coriandrum sativum | Coriander | • Coriandrin | • Effective antioxidant | Pb | [83] |
• Isocoumarines | • Stomach ulcer treatment and other abdominal challenges | [84] | |||
• Magnify the oxidative condition in rats treated upon Pb intoxication | |||||
• Reduce renal oxidative stress, perhaps by lowering heavy metal levels. | [85] | ||||
Garcinia kola | Heckel (bitter cola) | • Antioxidant activity | Pb | [86] | |
• Animal studies on the effectiveness of antihepatotoxic drugs against ethanol, galactosamine, and tetrachloride | [87] | ||||
• Make long-term Pb acetate poisoning more incapacitating | |||||
Allium sativum L. | Garlic | • Diallyl sulfide, diallyl disulfide, and diallyl trisulfide | Reduce the harmful effects of metal deficiency that cause tissue zinc and copper to rise when Cd is present | Cd | [88] |
• Improvement of antioxidant and metal-chelating capabilities | [89] | ||||
• Reduces the oxidative stress caused by Cd | [90,91] | ||||
Silybum marianum | Milk thistle, Carduus marianus, silymarin | • Silibinin, silidianin, and silichristin | • Offers mitigative effectiveness for DNA damage and survivability | Cd | [92] |
Zingiber officinale | Ginger | • Gingerol, shogaol, citral, pyrogallol | • By decreasing bioavailability and metal removal, it alleviates the hepatotoxicity brought on by Cd | Cd | [93] |
• Reduces the oxidative stress brought on by Cd | [90] | ||||
• Reduces the harmful effects of Cd on the liver and renal tissues of fetuses and mothers | [94] | ||||
Withania somnifera | Ashwagandha, Indian ginseng, winter cherry | • Alkaloids, steroidal lactones, tropine, cuscohygrine, withanolides, withaferin A | • Significant improvement in body weights, liver and kidney functioning, and recovery of oxidative damage caused by Cd | Cd | [95] |
• Has antioxidant protective efficacy against oxidative stress and Cd-induced liver and kidney damage | [96] | ||||
• Significant improvement of blood biochemical parameters in Cd-intoxicated chicks, including protein, albumin, globulin, ALT, AST, uric acid, and creatinine | [97,98] | ||||
Ocimum. sanctum | Holy basil, tulasi | • Eugenol | • Reduction in hepatic and renal Cd accumulation | Cd | [99] |
Asparagus recemosus | Satavar, shatavari, or shatamull | • Saponins, isoflavones, asparagine, racemosol, polysaccharides, mucilage | • Decrease in Cd-induced tissue oxidative damage | Cd | [100] |
Andrographis paniculata | Green chiretta, kalmegh | • Andrographolide | • Scavenger action of antioxidants against oxygen free radicals | Cd | [101] |
Asphaltum panjabinum | Shilajith | • Asphaltum punjabinum | • Chelating and elimination activity against Cd | Cd | [102] |
Spirulina platensis | Spirulina | • Cyclic peptides, alkaloids, and lipopolysaccharides | •Antioxidant protective effect against oxidative stress and Cd-induced liver and kidney damage | Cd | [103,104] |
Emblica Officinalis | Indian gooseberry | •Lannins (gallic acid, ellagic acid) | •Antioxidant effect against Cd-induced toxicity | Cd | [105,106] |
Ocimum sanctum | Tulsi leaf | • Significant enhancement in body weight • Protection against tissue oxidative damage and Cd bioaccumulation | Cd | [103] | |
Rosmarinus officinalis | Rosemary | • Rosmarinic acid, ursolic acid, and oleanolic acid | • Reduces tissue damage and oxidative stress brought on by Cd | Cd | [92,107] |
Zingiber officinale | Ginger | • Gingerol, shogaol, citral, pyrogallol | • Relieves the hepatotoxicity caused by Cd by reducing bioavailability and metal elimination | Cd | [93] |
• Ameliorates Cd-induced oxidative stress | [90] | ||||
• Reduces the harmful effects of Cd on the liver and renal tissues of fetuses | [94] | ||||
Panex ginseng | Korean red ginseng extract | • Ginsenosides | • Reduces the toxicity of Cd on the liver by possessing antioxidative and antiapoptotic effects | Cd | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi, R.; Ebrahimi, M.; Shakeri, M. Mitigating the Adverse Effects of Lead and Cadmium Heavy Metals-Induced Oxidative Stress by Phytogenic Compounds in Poultry. Poultry 2023, 2, 235-251. https://doi.org/10.3390/poultry2020019
Ebrahimi R, Ebrahimi M, Shakeri M. Mitigating the Adverse Effects of Lead and Cadmium Heavy Metals-Induced Oxidative Stress by Phytogenic Compounds in Poultry. Poultry. 2023; 2(2):235-251. https://doi.org/10.3390/poultry2020019
Chicago/Turabian StyleEbrahimi, Rohollah, Mahdi Ebrahimi, and Majid Shakeri. 2023. "Mitigating the Adverse Effects of Lead and Cadmium Heavy Metals-Induced Oxidative Stress by Phytogenic Compounds in Poultry" Poultry 2, no. 2: 235-251. https://doi.org/10.3390/poultry2020019
APA StyleEbrahimi, R., Ebrahimi, M., & Shakeri, M. (2023). Mitigating the Adverse Effects of Lead and Cadmium Heavy Metals-Induced Oxidative Stress by Phytogenic Compounds in Poultry. Poultry, 2(2), 235-251. https://doi.org/10.3390/poultry2020019